The Complete Guide to Quadratic Curve Sketching

Adrian P. Robson*

4 October 2011

Contents

1 Sketching Quadratics 2
2 Completing the Square 2
2.1 Example of Completing the Square 3
3 Finding the Turning Point 3
4 Finding the Roots 3
4.1 Example of Calculating Roots 4
5 Sketch Examples 4
5.1 Example One 4
5.2 Example Two 5
5.3 Example Three 6
5.4 Example Four 7
5.5 Example Five 7
6 Further Information 8
6.1 Completing the Square 8
6.1.1 Monic Quadratics 9
6.1.2 Non-Monic Quadratics 9
6.2 The Standard Roots Equation 10

[^0]
1 Sketching Quadratics

A quadratic is give by the equation

$$
y=a x^{2}+b x+c
$$

There are a number of points and lines that can be found in order to sketch this curve.

- Turning point
- Axis of Symmetry
- Mirror point
- Y intercept
- X intercepts - the real roots

The turning point is always required, and another two points are needed for a rough sketch. The axis of symmetry is useful for laying out the curve. The y-intercept is easy to calculate.

2 Completing the Square

Completing the square is used for transforming $y=a x^{2}+b x+c$ into the more helpful form $a(x+h)^{2}+k$.

$$
a x^{2}+b x+c=a(x+h)^{2}+k \quad \text { where } \quad h=\frac{b}{2 a} \quad \text { and } \quad k=c-\frac{b^{2}}{4 a}
$$

Alternatively, the square can be calculated as the following example shows

2.1 Example of Completing the Square

$$
\begin{equation*}
y=x^{2}+10 x+28 \tag{1}
\end{equation*}
$$

Take half the x coefficient, and proceed as follows to complete the square

$$
(x+5)^{2}=x^{2}+10 x+25 \quad \Rightarrow \quad x^{2}+10 x=(x+5)^{2}-25
$$

So substituting in (1), we get

$$
\begin{gathered}
y=x^{2}+10 x+28=(x+5)^{2}-25+28 \\
y=(x+5)^{2}+3
\end{gathered}
$$

3 Finding the Turning Point

After completing the square we have the form

$$
y=a(x+h)^{2}+k
$$

The h and k values of this equation give the turning point of the quadratic as $(-h, k)$.

When $k=0$ the quadratics is a 'perfect square,' and has only one real root.

4 Finding the Roots

If the quadratic is in the form

$$
y=a(x+h)^{2}+k
$$

We can easily deduce the number of roots:

$$
\begin{array}{lll}
k>0 & \Rightarrow & \text { no real roots } \\
k=0 & \Rightarrow & \text { one real roots } \\
k<0 & \Rightarrow & \text { two real roots }
\end{array}
$$

Calculating the roots is simple. When $y=0$

$$
a(x+h)^{2}+k=0 \quad \Rightarrow \quad x= \pm \sqrt{-k / a}-h
$$

4.1 Example of Calculating Roots

$$
y=(x+1)^{2}-16
$$

The roots are calculated as follows

$$
\begin{aligned}
(x+1)^{2}-16 & =0 \\
(x+1)^{2} & =16 \\
x & = \pm \sqrt{16}-1 \\
& =-1 \pm 4 \\
& =-5 \text { or } 3
\end{aligned}
$$

5 Sketch Examples

5.1 Example One

$$
y=x^{2}-4 x
$$

Quadratics with no constants coefficient always pass through the origin and have two real roots.

Y intercept: when $x=0, y=0$ and the point is $(0,0)$
X intercepts: when $y=0, x^{2}-4 x=0$

$$
x(x-4)=0 \Rightarrow x=0 \text { or } x=4, \text { and the points are }(0,0) \text { and }(4,0)
$$

Axis of symmetry is $x=2$
Turning point: $y=2^{2}-4 \times 2=4-8=-4$, and the point is $(2,-4)$

5.2 Example Two

$$
y=x^{2}+6 x+9
$$

Y intercept: when $x=0, y=9$ and the point is $(0,9)$
Complete the square: $(x+3)^{2}=x^{2}+6 x+9$, so it is a perfect square.
$y=(x+3)^{2} \Rightarrow$ one real root and turning point at $(-3,0)$
Axis of symmetry is $x=-3$
Mirror point is $(-6,9)$

5.3 Example Three

$$
\begin{equation*}
y=x^{2}-4 x+3 \tag{2}
\end{equation*}
$$

Y intercept: when $x=0, y=3$ and the point is $(0,3)$
Complete the square: The x coefficient is 4 so

$$
(x-2)^{2}=x^{2}-4 x+4 \quad \Rightarrow \quad x^{2}-4 x=(x-2)^{2}-4
$$

Substituting this in (2) gives $y=(x-2)^{2}-4+3$, so

$$
y=(x-2)^{2}-1
$$

Turning Point is $(2,-1) \Rightarrow$ two real roots
Axis of symmetry is $x=2$
Mirror point is $(4,3)$
X intercepts: when $y=0$,

$$
\begin{aligned}
& (x-2)^{2}-1=0 \\
& \Rightarrow(x-2)^{2}=1 \\
& \Rightarrow x-2= \pm 1
\end{aligned}
$$

So $x=1$ or $x=3$, and the points are $(1,0)$ and $(3,0)$

5.4 Example Four

$$
\begin{equation*}
x^{2}+4 x+8 \tag{3}
\end{equation*}
$$

Y intercept: when $x=0, y=8$ and the point is $(0,8)$

Complete the square:

$$
(x+2)^{2}=x^{2}+4 x+4 \quad \Rightarrow \quad(x-2)^{2}-4=x^{2}+4 x
$$

Substituting this in (3) gives $y=(x+2)^{2}-4+8$, so

$$
y=(x+2)^{2}+4
$$

Turning Point is $(-2,4) \Rightarrow$ no real roots
Axis of symmetry is $x=-2$
Mirror point is $(-4,8)$
X intercepts: There are none

5.5 Example Five

$$
y=\frac{x^{2}}{2}+2 x+4
$$

This is an example of a non-monic quadratic. Rearranging it gives

$$
\begin{equation*}
y=\frac{x^{2}+4 x}{2}+4 \tag{4}
\end{equation*}
$$

Y intercept: when $x=0, y=4$ and the point is $(0,4)$

Complete the square: We do this for $x^{2}+4 x$

$$
(x+2)^{2}=x^{2}+4 x+4 \quad \Rightarrow \quad x^{2}+4 x=(x-2)^{2}-4
$$

Substituting this in (4) gives

$$
y=\frac{(x-2)^{2}-4}{2}+4 \Rightarrow y=\frac{(x-2)^{2}}{2}-2+4
$$

So

$$
y=\frac{(x-2)^{2}}{2}+2
$$

Turning Point is $(-2,2) \Rightarrow$ no real roots
Axis of symmetry is $x=-2$
Mirror point is $(-4,4)$
X intercepts: There are none

6 Further Information

6.1 Completing the Square

$$
y=a x^{2}+b x+c \quad \rightarrow \quad a(x+h)^{2}+k
$$

The basic method is applied to quadratics that have $a=1$, which are called 'monic' quadratics. The method is extended to handle the more general 'non-monic' quadratic where $a \neq 1$.

6.1.1 Monic Quadratics

These are equations that have an x^{2} coefficient of one, and thus have the form $y=x^{2}+b x+c$.

Consider the 'perfect square'

$$
(x+p)^{2}=x^{2}+2 p+p^{2}
$$

A quadratic is a perfect square if the square of half of its x coefficient equals its constant coefficient. That is $b^{2} / 4=c$.

Now if we express the square as

$$
\left(x+\frac{b}{2}\right)^{2}=x^{2}+b x+\frac{b^{2}}{4}
$$

We can rearrange it as

$$
x^{2}+b x=\left(x+\frac{b}{2}\right)^{2}-\frac{b^{2}}{4}
$$

Introducing the constant coefficient c gives

$$
x^{2}+b x+c=\left(x+\frac{b}{2}\right)^{2}+c-\frac{b^{2}}{4}
$$

This can be expressed as

$$
x^{2}+b x+c=(x+h)^{2}+k \quad \text { where } \quad h=\frac{b}{2} \quad \text { and } \quad k=c-\frac{b^{2}}{4}
$$

6.1.2 Non-Monic Quadratics

Non-Monic quadratics are those that have an x^{2} coefficient that is not one, thus

$$
y=a x^{2}+b x+c
$$

This can be expressed as

$$
\begin{equation*}
y=a\left[x^{2}+\frac{b}{a} x\right]+c \tag{5}
\end{equation*}
$$

Completing the square for $x^{2}+b x / a$

$$
\left(x+\frac{b}{2 a}\right)^{2}=x^{2}+\frac{b x}{a} x+\frac{b^{2}}{4 a^{2}} \quad \Rightarrow \quad\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}=x^{2}+\frac{b}{a} x
$$

Substituting in (5) above

$$
\begin{aligned}
y & =a\left[\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}\right]+c \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c
\end{aligned}
$$

This can be expressed as

$$
a x^{2}+b x+c=a(x+h)^{2}+k \quad \text { where } \quad h=\frac{b}{2 a} \quad \text { and } \quad k=c-\frac{b^{2}}{4 a}
$$

Note that if $a=1$ these are the same as above.

6.2 The Standard Roots Equation

The roots of $y=a x^{2}+b x+c$ are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The value $b^{2}-4 a c$ is called the determinant, and it defines the nature of the quadratic's roots:

$$
\begin{aligned}
& b^{2}-4 a c<0 \quad \text { or } \quad b^{2}<4 a c \Rightarrow \text { No real roots } \\
& b^{2}-4 a c=0 \quad \text { or } \quad b^{2}=4 a c \quad \Rightarrow \quad \text { One real root } \\
& b^{2}-4 a c>0 \quad \text { or } \quad b^{2}>4 a c \Rightarrow \text { Two real roots }
\end{aligned}
$$

[^0]: *adrian.robson@nepsweb.co.uk

