The Complete Guide to Quadratic Curve Sketching

Adrian P. Robson*

 $4 \ {\rm October} \ 2011$

Contents

1	Sketching Quadratics						
2	Completing the Square 2.1 Example of Completing the Square						
3	Finding the Turning Point						
4	Finding the Roots						
	4.1	Example of Calculating Roots	4				
5	Sketch Examples						
	5.1	Example One	4				
	5.2	Example Two	5				
	5.3	Example Three	6				
	5.4	Example Four	7				
	5.5	Example Five	7				
6	Further Information						
	6.1	Completing the Square	8				
		6.1.1 Monic Quadratics	9				
		6.1.2 Non-Monic Quadratics	9				
	6.2	The Standard Roots Equation	10				

^{*}adrian.robson@nepsweb.co.uk

1 Sketching Quadratics

A quadratic is give by the equation

$$y = ax^2 + bx + c$$

There are a number of points and lines that can be found in order to sketch this curve.

- Turning point
- Axis of Symmetry
- Mirror point
- Y intercept
- X intercepts the real roots

The turning point is always required, and another two points are needed for a rough sketch. The axis of symmetry is useful for laying out the curve. The y-intercept is easy to calculate.

2 Completing the Square

Completing the square is used for transforming $y = ax^2 + bx + c$ into the more helpful form $a(x+h)^2 + k$.

$$ax^{2} + bx + c = a(x+h)^{2} + k$$
 where $h = \frac{b}{2a}$ and $k = c - \frac{b^{2}}{4a}$

Alternatively, the square can be calculated as the following example shows

2.1 Example of Completing the Square

$$y = x^2 + 10x + 28 \tag{1}$$

Take half the x coefficient, and proceed as follows to complete the square

$$(x+5)^2 = x^2 + 10x + 25 \quad \Rightarrow \quad x^2 + 10x = (x+5)^2 - 25$$

So substituting in (1), we get

$$y = x^{2} + 10x + 28 = (x + 5)^{2} - 25 + 28$$
$$y = (x + 5)^{2} + 3$$

3 Finding the Turning Point

After completing the square we have the form

$$y = a(x+h)^2 + k$$

The h and k values of this equation give the turning point of the quadratic as (-h, k).

When k = 0 the quadratics is a 'perfect square,' and has only one real root.

4 Finding the Roots

If the quadratic is in the form

$$y = a(x+h)^2 + k$$

We can easily deduce the number of roots:

 $k > 0 \Rightarrow$ no real roots $k = 0 \Rightarrow$ one real roots $k < 0 \Rightarrow$ two real roots

Calculating the roots is simple. When y = 0

$$a(x+h)^2 + k = 0 \quad \Rightarrow \quad x = \pm \sqrt{-k/a} - h$$

4.1 Example of Calculating Roots

$$y = (x+1)^2 - 16$$

The roots are calculated as follows

$$(x+1)^{2} - 16 = 0$$

$$(x+1)^{2} = 16$$

$$x = \pm\sqrt{16} - 1$$

$$= -1 \pm 4$$

$$= -5 \text{ or } 3$$

5 Sketch Examples

5.1 Example One

$$y = x^2 - 4x$$

Quadratics with no constants coefficient always pass through the origin and have two real roots.

Y intercept: when x = 0, y = 0 and the point is (0, 0)

X intercepts: when y = 0, $x^2 - 4x = 0$

 $x(x-4) = 0 \Rightarrow x = 0$ or x = 4, and the points are (0,0) and (4,0)

Axis of symmetry is x = 2

Turning point: $y = 2^2 - 4 \times 2 = 4 - 8 = -4$, and the point is (2, -4)

Example Two 5.2

$$y = x^2 + 6x + 9$$

Y intercept: when x = 0, y = 9 and the point is (0, 9)

Complete the square: $(x+3)^2 = x^2 + 6x + 9$, so it is a perfect square. $y = (x+3)^2 \Rightarrow$ one real root and turning point at (-3,0)

Axis of symmetry is x = -3

Mirror point is (-6,9)

5.3 Example Three

$$y = x^2 - 4x + 3 \tag{2}$$

Y intercept: when x = 0, y = 3 and the point is (0, 3)

Complete the square: The x coefficient is 4 so

$$(x-2)^2 = x^2 - 4x + 4 \implies x^2 - 4x = (x-2)^2 - 4$$

Substituting this in (2) gives $y = (x-2)^2 - 4 + 3$, so

$$y = (x-2)^2 - 1$$

Turning Point is $(2, -1) \Rightarrow$ two real roots

Axis of symmetry is x = 2

Mirror point is (4,3)

X intercepts: when y = 0,

 $(x-2)^2 - 1 = 0$ $\Rightarrow (x-2)^2 = 1$ $\Rightarrow x - 2 = \pm 1$

So x = 1 or x = 3, and the points are (1, 0) and (3, 0)

5.4 Example Four

$$x^2 + 4x + 8 (3)$$

Y intercept: when x = 0, y = 8 and the point is (0, 8)

Complete the square:

$$(x+2)^2 = x^2 + 4x + 4 \implies (x-2)^2 - 4 = x^2 + 4x$$

Substituting this in (3) gives $y = (x+2)^2 - 4 + 8$, so

$$y = (x+2)^2 + 4$$

Turning Point is $(-2,4) \Rightarrow$ no real roots

Axis of symmetry is x = -2

Mirror point is (-4, 8)

X intercepts: There are none

5.5 Example Five

$$y = \frac{x^2}{2} + 2x + 4$$

This is an example of a non-monic quadratic. Rearranging it gives

$$y = \frac{x^2 + 4x}{2} + 4 \tag{4}$$

Y intercept: when x = 0, y = 4 and the point is (0, 4)

Complete the square: We do this for $x^2 + 4x$

$$(x+2)^2 = x^2 + 4x + 4 \implies x^2 + 4x = (x-2)^2 - 4$$

Substituting this in (4) gives

$$y = \frac{(x-2)^2 - 4}{2} + 4 \quad \Rightarrow \quad y = \frac{(x-2)^2}{2} - 2 + 4$$

 So

$$y = \frac{(x-2)^2}{2} + 2$$

Turning Point is $(-2, 2) \Rightarrow$ no real roots

Axis of symmetry is x = -2

Mirror point is (-4, 4)

X intercepts: There are none

6 Further Information

6.1 Completing the Square

$$y = ax^2 + bx + c \quad \rightarrow \quad a(x+h)^2 + k$$

The basic method is applied to quadratics that have a = 1, which are called 'monic' quadratics. The method is extended to handle the more general 'non-monic' quadratic where $a \neq 1$.

6.1.1 Monic Quadratics

These are equations that have an x^2 coefficient of one, and thus have the form $y = x^2 + bx + c$.

Consider the 'perfect square'

$$(x+p)^2 = x^2 + 2p + p^2$$

A quadratic is a perfect square if the square of half of its x coefficient equals its constant coefficient. That is $b^2/4 = c$.

Now if we express the square as

$$\left(x+\frac{b}{2}\right)^2 = x^2 + bx + \frac{b^2}{4}$$

We can rearrange it as

$$x^{2} + bx = \left(x + \frac{b}{2}\right)^{2} - \frac{b^{2}}{4}$$

Introducing the constant coefficient c gives

$$x^{2} + bx + c = \left(x + \frac{b}{2}\right)^{2} + c - \frac{b^{2}}{4}$$

This can be expressed as

$$x^{2} + bx + c = (x+h)^{2} + k$$
 where $h = \frac{b}{2}$ and $k = c - \frac{b^{2}}{4}$

6.1.2 Non-Monic Quadratics

Non-Monic quadratics are those that have an x^2 coefficient that is not one, thus

$$y = ax^2 + bx + c$$

This can be expressed as

$$y = a \left[x^2 + \frac{b}{a} x \right] + c \tag{5}$$

Completing the square for $x^2 + bx/a$

$$\left(x + \frac{b}{2a}\right)^2 = x^2 + \frac{bx}{a}x + \frac{b^2}{4a^2} \quad \Rightarrow \quad \left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} = x^2 + \frac{b}{a}x$$

Substituting in (5) above

$$y = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} \right] + c$$
$$= a \left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a} + c$$

This can be expressed as

$$ax^{2} + bx + c = a(x+h)^{2} + k$$
 where $h = \frac{b}{2a}$ and $k = c - \frac{b^{2}}{4a}$

Note that if a = 1 these are the same as above.

6.2 The Standard Roots Equation

The roots of $y = ax^2 + bx + c$ are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The value $b^2 - 4ac$ is called the determinant, and it defines the nature of the quadratic's roots:

$b^2 - 4ac < 0$	or	$b^2 < 4ac$	\Rightarrow	No real roots
$b^2 - 4ac = 0$	or	$b^2 = 4ac$	\Rightarrow	One real root
$b^2 - 4ac > 0$	or	$b^2 > 4ac$	\Rightarrow	Two real roots