
Java Programming with SciTE

for Simple Projects on Windows Platforms

Adrian P. Robson
adrian.robson@nepsweb.co.uk

16th May, 2018

Contents

1 Introduction 1

2 Property Files 2

3 Setting Up Simple Projects 2
3.1 Stand-Alone Local Property File 3
3.2 User and Local Property Files . 3
3.3 User and Directory Property Files 3
3.4 Adding a JAR Tool . 4

4 Property Files and Code 5
4.1 Stand Alone Local Property File 5
4.2 User Property File . 5
4.3 Local or Directory Property File 6
4.4 Adding Build JAR Tool . 6

1 Introduction

The SciTE is a simple text editor with facilities for building and executing
programs. It can be used on Windows, Mac and Unix platforms. Here we show
how SciTE (4.0.3) can be configured on Windows to

• save all buffers before build,

• have tab as three hard spaces,

• use the default mono-space font,

• have a horizontal output pane and

• use a sub-folder for all byte code files (.class).

SciTE is a little unusual, in that most of its configuration is done using
manually edited property files. These can be stored with a project’s source

1

code files (.java), which allows us to tailor the editor’s behaviour precisely to
a project’s needs.

In this article, we describe how to set up a simple Java project that uses
SciTE as it development tool on a Windows computer. A simple project has all
its source code in a single folder. Complex projects that have code sub-folders
are discussed in a separate report []. We also describe how a build JAR tool
can be added to SciTE’s tools menu.

The SciTE program and some documentation can be obtained from

www.scintilla.org/SciTE.html

and there is an an interest group at

groups.google.com/forum/#!forum/scite-interest

2 Property Files

SciTE has four types of property files:

Local property file called SciTE.properties that can be in the same direc-
tory as the file being edited. If present, it applies to only to the files in
that folder.

Directory property file called SciTEDirectory.properties that can in the
same folder as as the file being edited or in a parent folder. If present, it
applies to all the files in the folder and in its sub-folder hierarchy.

User property file called SciTEUser.properties on Windows. It is stored
in the user’s account/root folder, and it applies to any of the user’s files
being edited with SciTE.

Global property file called SciTEGlobal.properties. This is provided as
part of SciTE’s installation, and it applies to any file in the computer’s file
system being edited with SciTE. It is normally best if the global properties
are not changed.

There are also various language specific property files1, but like global properties
these should not be altered.

The four types of property files given above, override each other as follows,
left to right:

local
overrides−−−−−−→ directory

overrides−−−−−−→ user
overrides−−−−−−→ global

3 Setting Up Simple Projects

Simple projects are those that store all source code files (.java) in their root
folder. They are mostly easy to setup. There are three methods described. The
author’s preference is for a user and local property files combination, which is
described in §3.2 below. A method for adding a JAR tool is also described.

1The default Java settings are in cpp.properties.

2

3.1 Stand-Alone Local Property File

This is the simplest method. All properties are in a single file. The properties
apply to only the files in the project’s root folder. The setup procedure is:

1. Make a suitably named root folder for the project.

2. Make a sub-folder called classes in the project’s root folder.

3. Create a local property file called SciTE.properties in the project’s root
folder.

Copy its contents from §4.1, or download the complete file from the
nepsweb.co.uk site.

4. Start using SciTE to edit Java code files in the project’s root folder. Then
compiling and running programs using the editor’s tools menu.

3.2 User and Local Property Files

With this method we have two property files. A common user file provides
general settings; and a local property file gives settings specific to a particular
Java project. It has the advantage that the general user properties apply to any
file being edited not just those in the project’s root folder. The setup procedure
is:

1. If a user property file already exists and you like its settings, there is no
need to replace it. Otherwise, create a file called SciTEUser.properties

in your account/root folder.

Get its contents from §4.2, or download a complete file from the nepsweb.co.uk
site.

This step is only needed once.

2. Make a suitably named folder for the project.

3. Make a sub-folder called classes in this project folder.

4. Create a local property file called SciTE.properties in the project folder.

Copy its contents from §4.3, or download a complete file from the nepsweb.co.uk
site.

Compiler options can be changed by editing the file and uncommenting
the opt1, opt2, opt3 or opt4 variable assignments.

5. Start using SciTE to edit Java code files in the project’s root folder. Then
compiling and running programs using the editor’s tools menu.

3.3 User and Directory Property Files

This method requires all Java project folders to be in or below a common root
folder, which we shall call the Java root folder.

We use a common user property file to provide general settings for all edited
files; and a common directory property file that gives Java specific settings for

3

files in the Java root folder and its sub-folder tree. Furthermore, some individual
projects can have local property files if they need different properties.

It is the most versatile of the simple project methods. But it is more com-
plicated, and it might not be worth the effort compared with just using user and
local property files (§3.2). The setup procedure is:

1. If a user property file already exists and you like its settings, there is no
need to replace it. But it must have directory property files enabled with

properties.directory.enable=1

Otherwise, create a file called SciTEUser.properties in your account’s
root folder.

Get its contents from §4.2, or download a complete file from the nepsweb.co.uk
site.

This step is only needed once.

2. Make a suitably named Java root folder that will hold your Java project
folders.

3. Create a directory property file called SciTEDirectory.properties in
the Java root folder.

Get its contents from §4.3, or download a complete file from the nepsweb.co.uk
site.

4. For each Java project:

(a) Make a suitably named project folder in the Java root folder. Java
project folders can be grouped in parent folders an long as these are
in the Java root folder’s sub-folder tree..

(b) Make a sub-folder called classes in the project folder.

(c) Start using SciTE to edit Java code files in the project’s root folder.
Then compiling and running programs using the editor’s tools menu.

3.4 Adding a JAR Tool

In all of the methods described above, a build JAR tool can be added. This
will create a JAR file containing the contents of the project’s classes folder
package in such a way the the whole program can be shipped as a single file and
executed with

java -jar jarfile

For a stand-alone local property file (§3.1) or user with local property files
(§3.2), add the code in §4.4 to the project’s SciTE.properties file; for user
with directory files (§3.3), add it to the shared SciTEDirectory.properties

file. The code can be alternatively downloaded from the nepsweb.co.uk site.
Once in place the new properties must be edited. The variables jarname and

jarmain must also be given correct values. The variable jarmain is the name
of the JAR file to be built; and jarmain is the name of a class with a main
method that is the entry point to the program. For example:

jarname=myprog

jarmain=MainClass

4

4 Property Files and Code

Here is some property file code that can be used to create the files discussed in
in §3 above.

4.1 Stand Alone Local Property File

These are the SciTE properties for a stand alone local property file that is
discussed in §3.1 above. It can be downloaded from the nepsweb.co.uk site.

SciTE.properties

##

Java command overrides (Tools menu)

##

command.compile.*.java=javac -d classes $(FileNameExt)

command.build.*.java=javac -d classes *.java

command.go.*.java=java -classpath classes $(FileName)

command.clean.*.java=\

@echo deleting class folder &\

rd /s/q classes &\

@echo recreating class folder &\

md classes &\

@echo done

##

Editor configuration

##

Save all buffers for build

save.all.for.build=1

Tab is 3 spaces

tabsize=3

indent.size=3

use.tabs=0

use default monospace font

font.base=$(font.monospace)

font.small=$(font.monospace)

font.comment=$(font.monospace)

font.text=$(font.monospace)

font.text.comment=$(font.monospace)

font.embedded.base=$(font.monospace)

font.embedded.comment=$(font.monospace)

font.vbs=$(font.monospace)

4.2 User Property File

These are the SciTE properties for a user property file for use with the local
and directory files given in §4.3 and discussed in §3.2 and §3.3.

SciTEUser.properties

Directory properties enabled

#

properties.directory.enable=1

Output Pane is horizontal and cleared

#

5

split.vertical=0

clear.before.execute=1

Save all buffers for build

#

save.all.for.build=1

Tabbing is 3 spaces

#

tabsize=3

indent.size=3

use.tabs=0

Always use default monospace font

#

font.base=$(font.monospace)

font.small=$(font.monospace)

font.comment=$(font.monospace)

font.text=$(font.monospace)

font.text.comment=$(font.monospace)

font.embedded.base=$(font.monospace)

font.embedded.comment=$(font.monospace)

font.vbs=$(font.monospace)

4.3 Local or Directory Property File

These are SciTE properties for a local or directory property files. This version
is used with the user property file given in §4.2, as discussed in §3.2 and §3.3
above.

SciTE.properties

or

SciTEDirectory.properties

##

Java command overrides (Tools menu)

##

command.compile.*.java=javac -d classes $(FileNameExt)

command.build.*.java=javac -d classes *.java

command.go.*.java=java -classpath classes $(FileName)

command.clean.*.java=\

@echo deleting class folder &\

rd /s/q classes &\

@echo recreating class folder &\

md classes &\

@echo done

4.4 Adding Build JAR Tool

This properties code will add a build JAR command to SciTE’s tools menu. Its
use is explained in §3.4 above.

###

JAR build command

###

Change as required to setup JAR tool, where:

jarname is the name of the JAR file

jarmain is the name of the class with the main method

#

jarname=helloworld

6

jarmain=HelloWorld

command.name.2.*.java=Build JAR

command.2.*.java=\

jar cfe $(jarname).jar $(jarmain) -C classes .

7

	Introduction
	Property Files
	Setting Up Simple Projects
	Stand-Alone Local Property File
	User and Local Property Files
	User and Directory Property Files
	Adding a JAR Tool

	Property Files and Code
	Stand Alone Local Property File
	User Property File
	Local or Directory Property File
	Adding Build JAR Tool

