
Deploying Python Programs on
Windows Platforms

Adrian P. Robson

1 March 2016

Contents
1 Introduction 1

2 GUI and CUI Program Execution 2
2.1 File Shortcuts . 2
2.2 Pausing a Console Application 3

3 Command Line Execution 3
3.1 Startup Scripts . 4
3.2 System Path . 4

4 Program Location 4
4.1 Module and Other Files . 5

4.1.1 Modules . 5
4.1.2 Data files . 5

4.2 Folder Strategies . 5

5 Python Language Installation 7
5.1 Multiple Pythons . 7

6 Summary 7

7 Sample Installation Instructions 8

1 Introduction
This report explains how a Python application program can be ‘installed’ on a
Windows computer.

• without distributing it with a specialised installation tool, such as Inno
Setup,

• or converting it to an exe file with a tool like py2exe.

This approach requires that python programs are distributed as files of plain
text. If you do not want what is effect open source code, you will have to choose

1

a different way to distribute your programs. Module files are discussed, but
packages are not considered in this report.

Three types of application are considered: Graphical User Interface (GUI),
Console User Interface (CUI) and command line. The first two have a similar
treatment, but command line invocation needs a little more work. Consult the
summary section (§6) for a short overview. Other sections look at the process
in more detail: the need for Python to be installed is explained (§5) and some
sample installation instructions are given (§7). Strategies for invoking GUI and
CUI programs are described together(§2), but command line execution is looked
at separately (§3).

2 GUI and CUI Program Execution
GUI application can be very easy to use, but programs with a CUI are much
simpler to write, and for many applications a CUI can be more than adequate.

A program is one or more files that contain Python language text (scripts).
One of these is the entry point of the program, which we will call the main
file. Other program files are modules, which are collections of useful function
definitions.

A Python program can be started by double left clicking its main file icon1.
However, it is often more convenient to to invoke a Python program with a
file shortcut that can be put into the Program Start menu or on the Desktop
(See§2.1).

Graphical Usue Interface programs should have the type pyw to prevent a
console window being opened when the program starts.

Console interface applications have to run in a terminal window, so they must
have a py file type. Unfortunately, the terminal window closes when the
program finishes, possibly hiding important information. To prevent this,
CUI applications should pause before they finish (See §2.2).

2.1 File Shortcuts
File shortcuts are good for invoking GUI and CUI applications. They are
normally put in the Start menu or on the Desktop, and double left clicking them
will start the program.

There are a few of ways to make a shortcut for a Python program. Here are
a couple:

• 1. Right click on the program file, then left click Create shortcut.
2. A new shortcut will appear in the folder. Rename it as required, and

move (drag and drop) it to where you want it to be. The program
file name in a shortcut is an absolute path, so is okay to move the
shortcut anywhere you want to, but it will probably not work if it is
transfered to a different computer say as part of a folder structure.

1This only works if file type associations have been set for py and pyw, which should be so
if Python has been correctly installed.

2

• This method is rather longer but puts the shortcut directly into the Start
menu:

1. Left click Start, right click All programs, then left click Open or Open
all users.

2. A Start Menu window will appear. Open the Programs folder.
3. Open the folder where you want the shortcut to be shown, creating a

new folder if required.
4. Right click in the folder window, select new and then left click Shortcut.

(a) Browse to the Python program file, select it, then left click Next.
(b) Type in a name for the shortcut, then left click Finish.
The new shortcut will be created.

The working folder of a shortcut can be changed by modifying the Start in
box in the shortcut’s properties window. However, as with the program, the
path entered must be absolute. Shortcuts can be combined with batch files (§3.1)
to achieve more complicated behaviour.

2.2 Pausing a Console Application
A console application started from a shortcut runs in a window with command
line input and output. Unfortunately, the window closes when the program
ends, possibly hiding important information. Putting a pause at the end of the
program is an easy way to fix this:
input("Press enter to close window:")

Unfortunately, this can be incompatible with using the program from the
command line, where a pause is not wanted. A solution is to use a command
line parameter to control the program’s behaviour. Assuming that there are no
other arguments, put this statement at the end of the program:

if len(sys.argv) == 2 and sys.argv[1].lower() == "-pause":
print()
input("Press enter to close window:")

Then in the program’s shortcut properties add a pause flag to the the end of the
path in the Target box like this:
C:\Users\...\myprog.py -pause

In the equivalent bat file, the pause argument is omitted.

3 Command Line Execution
Command line execution is starting a program by typing its name in an already
open terminal window. User interaction then continues as it would with a
shortcut started CUI program. Without help the full relative file name and type
of its main file has to be used. However, a neat alternatively is to use a bat
script file to start the program with just a simple command name (§3.1). For
this to work the folder containing the bat file must be in the system path (§3.2).

Shortcuts are no help in this context. They can be used from the command
line but their type (lnk) has to be given (!). Do I need this

could it be a
footnote

3

3.1 Startup Scripts
Batch (bat) files can be used to start a Python program from the command line
without having to giving a file type. They offer a versatile way to start Python
programs: the working folder can be changed, pre or post processing can be
performed, alternative versions of Python can be used. As a simple example, a
file called demo.bat could contain:

@echo off
rem Wrapper for demonstration program.
demo/demo2.py demo start.ini %1 %2 %3

With this, the command demo will invoke a program called demo2.py, which is
in sub-folder demo. It is given start.ini as a argument, and it will accept up
to three further arguments, which can be given with the command.

The use of bat files is not restricted to command line execution. They can
be combined with shortcuts for CUI and GUI programs.

3.2 System Path
The Windows PATH variable is used by the operating system to locate programs
started from the command line. It contains a list of folders that are searched to
find the required executable. Adding a folder to this list is done as follows:

1. Left click Start menu, Computer (in left column), System properties (top
menu bar), Advanced system settings (right column) and then Environment
Variables (Button).

2. This opens a dialogue window: Locate and select PATH in the System
Variables list, and left click the Edit (button).

3. This opens another dialogue window: Change the string in its Variable
value text box by adding a semicolon and the absolute path of the new
folder to the end of the string.

4. Repeatedly left click okay to close all dialogues and commit the change.

Take great care not to change or delete and other variables.

4 Program Location
Python programs can be put anywhere if a shortcut or bat file is used to invoke
them, but scattering programs about the file system is not advised. A better
idea is to put them in a dedicated folder. There are a couple places where such
a folder might be sensibly put:

Program Files folder is the place where most installed applications are stored.
This is probably the best location for normal installation. There might
also be a Program Files (x86) folder, which holds 32-bit executables2.
For consistency, use Program Files if there is a choice.

264-bit versions of Microsoft Windows have Program Files and Program Files (x86)
folders for backward compatibility.

4

Documents folder is easy to access and is normally included in a standard
backup. This is be good method for developers. Using a single root folder
for all programs and other executables is recommended. This cam of course
have many sub-folders to organise the programs. (See §4.2 for example of
how this might be done.)

If command line execution is used, then the folder holding the program’s bat
file must be in the system path (see §3.2).

4.1 Module and Other Files
4.1.1 Modules

Modules are most simply stored in the same folder as the main program, or in
sub-folders. The location affects the module’s import name. So the module
mymodule in sub-folder modules would be loaded with

import modules.mymodule

where module folders are referenced relative to the program’s folder3.

4.1.2 Data files

When a program creates a data file with a relative path, it is put in the working
folder. If the program is started with a shortcut, the working folder will by
default be where the Shortcut was created. If it is run as a console application via
a bat file, the default working folder will where the bat file is stored. Starting the
program from the command line makes the working folder the console window’s
current folder.

The working folder can be changed: For shortcuts modify the Start in box in
the shortcut properties window, but an absolute path must be given.

4.2 Folder Strategies
Here we look at ways to store a Python program in the target computer’s file
system in more detail than in §4 above. For this purpose, a program consists
of a main script file and zero or more module files. There can also be data,
documentation and bat files.

There is no definitive scheme for storing Python script files, but a number of
examples are given below:

Two separate applications in Program Files:
The program myapp is a GUI application. It is started with a shortcut in
the Start Menu. The program myapp2.py is a command line program.
Program Files\

...
pyapp\

myapp.pyw ← shortcut to this file
myappmod.py

3There is a PYTHONPATH environment variable and some Python start parameters that can
affect the module search path, but these are not considered here.

5

pyapp2\ ← folder in system path
myapp2.py
myapp2.bat ← for command line execution

A program that is a single file in Documents:
The program myprog in a consol interface application, and it is invoked
from the command line. The folder bin4 is used to store programs and
other executables.
Documents\

...
bin\ ← folder in system path

...
myprog.py ← shortcut to this file
myprog.bat ← for command line execution

A single program that has multiple files in Documents:
The program myprog\main has a console interface and is also executed
from the command line. It has a couple of modules and a configuration
file.
Documents\

bin\ ← folder in system path
myprog\ main.py ← shortcut to this file

module1.py ← module
module2.py ← module
myprog.ini ← configuration file

myprog.bat ← for command line execution

Multiple programs from the same developer with shared modules:
The programs myProgA and myProgB are executed from the command line.
They are written by NepsWeb, and share moduleA.py and moduleB.py.
Documents\

bin\ ← folder in system path
myProgA.bat ← for command line
myProgB.bat ← for command line
nepsweb\ ← holds all the files from NepsWeb

readme.txt ← documentation
module1.py ← shared module
module2.py ← shared module
myProgA.py
myProgB.py

Shared modules in a sub-folder:
The programs myProgC and myProgD have GUIs. They are written and
distributed by NepsWeb and use modules in the network folder.

4The bin folder name comes from the Unix operating system. Unix programs are often
written in a language like C, which is complied and linked to create an executable machine code
or binary file. So the directory where these executable files are stored is called bin. However,
a bin directory is typically used to store anything that can be executed, including scripts and
Python code (!).

6

bin\
nepsweb\ ← holds all the files from NepsWeb

myProgC.pyw ← shortcut to this file
myProgD.pyw ← shortcut to this file
network\ ← holds the network module files from NepsWeb

lan1.py ← shared module
wan2.py ← shared module

Here, the program myProgD would load the module lan1 with the statement
import network.lan1 for example.

5 Python Language Installation
The methods described in §2 and §3 require that a suitable version of the Python
language is present on the target computer. This requirement should be given
in the installation instructions. It can just be stated as something like: “Python
3.2 or later must be installed.” Additionally, instructions on how to obtain the
correct version can be given5, or a copy of a python-x.x.x.msi installation file
can be included in the distribution.

5.1 Multiple Pythons
Sometimes we need to have more that one version of Python available, most
often because we have legacy Python 2 applications. If this is the case, then we
might have to explicitly state which version of Python we want. So in a batch
file we would typically invoke Python 2.7 with
C:\Python27\python demo\demo.py

File shortcuts can be adapted by changing the Target box in their properties
window. Simply put C:\Python27\python, separated by a space, in front of the
file name’s absolute path.

6 Summary
Python programs can be easily installed without special tools or scripts. A
typical procedure is as follows:

1. Download and install Python language software if this has not already
been done. (§5)

2. Create a folder called bin in the standard Documents folder if this has not
already been done. Put the bin folder in the system path if command line
invocation is wanted. (§3.2)

3. Copy the Python program files to a folder in bin, and put any bat files
in bin. GUI main files should be of type pyw and console applications of
type py.

4. Create a shorttcut to the main program file, and put it in the Start menu.
(§2.1)

5Python 2 and 3 can be downloaded from www.python.org/downloads,

7

7 Sample Installation Instructions
We are not using an installation tool so the process relies on written instructions.
The following is an example of some installation instructions for a simple Python
GUI program with a couple of modules and a configuration file.

word2tex Windows 7 Installation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Word2tex is a program for converting Microsoft Word documents to Tex. User
documentation can be found in the word2tex\docs folder after installation
is complete.

You will need word2tex.zip for the installation. A basic knowledge of
how to use the Windows desktop is assumed.

This installation requires that Python 3.2 or later is installed. The
latest version of Python can be obtained from:

https://www.python.org/downloads/

The program and associated files will be put in a folder called
Documents\bin, but this an be changed if desired.

1. Create a 'bin' folder in your Documents folder if it does not already
exist.

2. Put a copy of wor2tex.zip into bin the and extract it. A word2tex
folder will be created. Delete the zip file.

3. Put the program in the Start Menu by:

(a) Left click Start, right click All Programs, then left click Open
or Open all Users.

(b) A Start Menu window will appear. Open the Programs folder.

(c) Right click in the folder window, select New and then left click
Shortcut.

i. Browse to the bin folder of step 1. Select the word2tex.pyw
file, then click Next.

ii. Type in a word2tex as a name for the shortcut, then click
Finish. A new shortcut will be created.

(d) Close the folder window.

4. Start the program by going to Start/All Programs and clicking on the
word2tex icon.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[pydistro.tex 3.0]

8

	Introduction
	GUI and CUI Program Execution
	File Shortcuts
	Pausing a Console Application

	Command Line Execution
	Startup Scripts
	System Path

	Program Location
	Module and Other Files
	Modules
	Data files

	Folder Strategies

	Python Language Installation
	Multiple Pythons

	Summary
	Sample Installation Instructions

