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Chapter 1

Introduction

This book is written for students and professionals who can already program in
a language like Ada, Modula-2, Pascal, C or Fortran, and want to move to C++

because of its object oriented programming features. It will also be useful to
programmers familiar with C++ who want a guide that covers some of the most
recent features of the language. It does not attempt to teach programming to
beginners. However, it can be used by students learning to program with C++,
as a companion to supplement their main text book.

All important features of the language are explained, including templates,
exception handling, run-time type information, and the new cast operators. The
C++ string class is used throughout the book. However, other parts of standard
class and template libraries are beyond the scope of this book.

There are exercises, at the end of each chapter, which reinforce and fur-
ther explore the ideas and techniques of C++ programming. There are model
solutions in appendix A for almost all of these exercises.

1.1 The C++ Language

C++ was designed and originally implemented by Bjarne Stroustrup, who works
for AT&T Bell Telephone Laboratories. The language began as C with Classes.
in 1982, and was first called C++ in 1983. It was being used by AT&T re-
searchers in 1984 and was distributed to Universities and throughout AT&T in
early 1985. The AT&T C++ translator Cfront version 1.0 was released to the
public in late 1985.

Commercial compilers began to appear in 1988 from companies like Zortec
and GNU. C++ moved into the mainstream of programming languages with
Cfront 2.0 in June 1989, and major manufactures started providing C++ prod-
ucts for their platforms. Borland released a C++ compiler in 1990, followed by
Microsoft in 1992. Cfront 3.0 was released in 1991 with templates, and a version
supporting exception handling followed in 1992.

An ANSI C++ Committee was formed in late 1989. One of their first actions
was to approve templates and exception handling. Since then, the committee
has added name spaces, run-time type information, and many minor features
to the language.

The design of C++ was influenced by many other computer languages. C

1



2 CHAPTER 1. INTRODUCTION

provided the basic syntax and semantics. Classes came from Simula67. Oper-
ator overloading and embedded declarations are features of Algol68. Ada and
Clu influenced C++ templates, while Ada, Clu and ML influenced the design
of C++ exception handling.

C++ supports ANSI C, with minor exceptions. It is link compatible with the
standard C libraries. Unlike standard C, C++ will only allow ANSI C syntax, so
C++ is a strongly typed language. Some C++ programmers ignore the object
oriented aspects of C++, and use it as an improved C. This is acceptable, but
C++ is at its best when its object oriented features are used to the full.

There are many excellent C++ compilers available. However, some do not
conform to the draft ANSI C++ standard. This is not a criticism, but it does
mean that certain features discussed in this book will not work with some com-
pilers.

1.2 Object Oriented Programming

Object oriented programming is an approach to software design. In general,
it approaches the design of software by building a program from a number of
objects that communicate by exchanging messages. An object has a state that
can change when messages arrive. Objects are instances of classes. A class has
a data part, which stores state, and a set of allowed messages that can be sent
to an instance of that class. Any number of instances of a particular class can
be created. Bjarne Stroustrup, the original designer of C++, defines the object
oriented programming paradigm as:

Decide which classes you want; provide a full set of operations for
each class; make commonality explicit by using inheritance.

In C++, a class defines a public interface for a object in the form of a set
of functions, and a private implementation in the form of functions and data.
The separation of interface and implementation means that an object’s user
does not have know about its internal working. This abstraction promotes good
program design. New classes can be defined by inheriting the attributes of
existing classes.

Object oriented programming supports a form of polymorphism. Different
objects can understand the same message, although they may respond to it in
different ways. Messages can be sent to an object without knowing its exact
type. Polymorphism is further supported by classes that are defined with pa-
rameterised attributes. In C++ these are called template classes, and they are
used as general purpose or utility classes.

The list of features said to identify an object oriented programming lan-
guage vary, depending on the language being described. However, there are
some features that most authors agree must be present: objects, classes, ab-
straction and inheritance. To get full benefit from object oriented programming
polymorphism is also required.

C++ is a hybrid object oriented language. It combines the features of a
traditional third generation language with object orientation. Some languages,
such as Smalltalk, are totally based on an object oriented approach. These
are called pure object oriented languages. There is much debate about which
sort of language is best for particular applications. At the moment, hybrid
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languages are preferred for the development of production applications, while
pure languages are very good for fast prototyping.

1.3 Overview of chapters

Chapter 2 The Basics
The form of a simple C++ program is explained. Comments, names, the
fundamental types, constants and simple input and output are discussed.

Chapter 3 Variables and Expressions
Variables, operators and expressions are explained in this chapter. All
the important C++ operators are discussed. How to use the standard
C++ string class is explained. Type conversion and side effects are also
discussed.

Chapter 4 Controlling Execution
The control statements available in C++ are described. These include if,
switch, while, do and for statements.

Chapter 5 Compound Types
The use of structures and arrays is explained. Pointers and memory man-
agement are introduced. Other material covered in this chapter includes
typedef names, reference types, and old C style strings.

Chapter 6 Functions
Functions and their use are explained. The different sorts of parameters
and return values that can be used with function are described. Recursive
functions are discussed.

Chapter 7 Classes
This introduces the concept of classes and shows how class objects can be
used to build programs. Constructors and destructors are explained.

Chapter 8 More about Classes
This chapter introduces more material on classes. Inlining, static mem-
bers, constant objects and members, nested classes and separate compila-
tion are amongst the C++ class features discussed.

Chapter 9 Friends and Operators
Friend functions and classes are explained, and operator overloading is
introduced.

Chapter 10 Inheritance
This extends the previous chapters by showing how inheritance can be
used to build class hierarchies. Single and multiple inheritance and some
aspects of C++ design style are discussed.

Chapter 11 Virtual Functions
Some of the more advanced aspects of C++ programming are considered
in this chapter. The concept of polymorphism is introduced. Virtual func-
tions and pointers to objects are presented as one method of supporting
polymorphism in C++.
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Chapter 12 Templates
This chapter introduces templates as an important feature of C++. Func-
tion templates are explained. Generic and container classes are discussed,
and C++ class templates are introduced to support these concepts.

Chapter 13 Advanced Features
This final chapter introduces some of the newer features of C++. Excep-
tion handling, casting, run-time type information and name spaces are
all discussed. In particular, casting is explained in detail because of the
dangers associated with the use of this feature.

Chapter 14 More Input and Output
The use of the standard C++ input and output streams has already been
introduced, but this chapter provides much more detail. Topics that
are discussed include the standard streams, setting flags and parameters,
named files, and how to detect and manage stream errors and end of file
conditions.

Appendices
The appendices include worked solutions for almost all the chapter exer-
cises. There is a detailed description of the standard C++ string class,
and a list of some other useful libraries

1.4 Additional reading

Learning to program with C++

K. A. Barclay and B. J. Gordon,
C++ Problem Solving and Programming, Prentice-Hall, 1994.

N. Graham,
Learning C++, McGraw-Hill, 1991.

S. Lippman,
A C++ Primer, 2nd Edition, Addison-Wesley, 1991.

R. Winder,
Developing C++ Software, 2nd Edition, John Wiley, 1992.

The C++ language

J. O. Coplien,
Advanced C++ Programming Styles and Idioms, Addison-Wesley, 1992.

M. A. Ellis and B. Stroustrup,
The Annotated C++ Reference Manual, Addison-Wesley, 1990.

P. J. Plauger,
The Standard C++ Library, Prentice-Hall, 1995.

B. Stroustrup,
The C++ Programming Language, 2nd Edition, Addison-Wesley, 1991.

B. Stroustrup,
The Design and Evolution of C++, Addison-Wesley, 1994.



1.4. ADDITIONAL READING 5

The C language

M. Banahan, D. Brady and M. Doran,
The C Book: Featuring the ANSI C Standard, Addison-Wesley, 1991.

B. Kernighan and D. Ritchie,
The C Programming Language, 2nd Edition, Prentice-Hall, 1984.

Object oriented analysis and design

G. Booch,
Object-Oriented Analysis and Design with Applications, 2nd Edition,
Benjamin-Cummings, 1993.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen,
Object-Oriented Modeling and Design, Prentice-Hall, 1991.
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Chapter 2

Getting Started

2.1 A simple C++ program

Lets start by considering the following C++ program:

// file: demo.cpp

// Demonstration program - print numbers

#include <iostream.h>

const int MAX = 10;

void main()

{

int count = 1;

while ( count <= MAX ) {

cout << "counting " << count << endl;

count = count + 1;

}

}

This program does not do very much. It just prints a list of numbers from zero
to ten.

The lines beginning with // are comments. They do not effect the operation
of the program, and are used to make the program easier to understand and
maintain. In this case, they briefly tell us what the program does, and where it
is stored.

The line beginning with #include is a preprocessing directive. Its use allows
the standard C++ I/O library <iostream.h> to be used in the program.

The body of the program is given in main, between the outer set of braces, {
and }. This is the executable part of the program. It is composed of statements,
which end with semicolons. All C++ programs have a main function.

A C++ program can communicate with its environment by receiving data
from the command line and returning a status value. The word void in front
of main indicates that the program will not return a status value when it fin-
ishes. And the empty parentheses () mean the program will not expect any
information from its environment at run-time.

7
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In main, the first line defines an integer variable called count, giving it an
initial value of one. This is followed by a while statement, which repeatedly
executes the block after it. It stops when the expression counting <= MAX

evaluates to false. MAX is a constant, defined above main, with the value 10.
So when count becomes greater than 10, the loop will stop. Each time the
loop executes, a message is printed on the computer’s screen, and count is
incremented by one. This happens ten times.

The identifier cout names the standard output stream, and the symbol <<
means insert into the stream. Together, they output data to the screen. First
"counting ", which is a string literal, is printed, followed by the value in count.
Finally, endl is an manipulator that causes the output stream to start a new
line.

The symbol = is the assignment operator. It puts the value of the expression
on its right-hand side into the variable on its left-hand side. It is used here,
with the + operator, to add one to count.

A C++ program ends when main is finished. In this program there is nothing
after the while statement. So when the loop finishes so does the program.

The demonstration program is stored in a file called demo.cpp. The file
type cpp is the default for Borland’s C++ compiler. A different file type may
have to be used with other compilers. The exact way to turn this program into
an executable form will depend on the operating system and compiler that are
being used.

2.2 Program structure

A C++ program consists of one or more files containing definitions of classes,
variables, constants and functions. These are compiled, and the resulting ma-
chine code is linked together to form an executable program. Large programs
are broken down into separate, independently compilable, components stored
in separate files. Simple programs, which include most of the examples in this
book, are written as a single file. However, even the simplest program normally
uses some components from the standard libraries that come with the C++

language.
When a separate component is used, a #include directive obtains a specifi-

cation of its interface, and this is used by the compiler to check, in a limited way,
that it the component is being used correctly. The procedure for compiling and
linking a C++ program depends on the operating system and compiler being
used. Most will automatically link the standard libraries into your program,
but application specific components have to be explicitly managed. The use of
header and source file to support separate components is explained in §8.9.

There are a number of ways to organise the layout of a C++ program. One
of the simplest and most effective is as follows:

// Introductory comments ...

// Standard libraries ...

#include <iostream.h>

.........
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// Application specific components ...

#include "applic.h"

.........

// Global constants ...

const int MAX = 100;

.........

// A few functions used only in main ...

void startupmess( ostream& os )

{

os << "hello" << endl;

}

.........

// The main program ...

void main()

{

// Local variables ...

int pagecount;

...

// The main part of the program ...

startupmess(cout);

...

}

Normally class declarations (see chapter 7) are put in separate files, but
during initial development, and for most of the exercises in this book, it is okay
to put them in the same file as the main program. The simplest approach is to
put all class related declarations before main.

2.3 Comments

Any text following //, until the end of the line is a comment. A comment can
also be enclosed between /* and */. This sort of comment can span more than
one line. For example:

// this is a comment line

a = b; // this is a comment at the end of a line

/* this is also

a

comment */

Comments are used to document a program so it is easier to understand and
maintain. They do not affect a program’s operation.

2.4 Identifiers

Names or identifiers in C++ consist of letters, digits and the underscore char-
acter. Identifiers must begin with a letter or an underscore. Upper and lower
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case character are distinct. All identifiers must be declared before they can be
used. A declaration introduces one or more identifiers into a program and gives
them meaning. Some examples are:

const float RANGE = 3.6; // declare a constant called RANGE

char ans; // declare a variable called ans

float range; // range not the same name as RANGE

int max( int a, int b); // name a function called max

2.5 Variables and types

Variables are storage locations that hold a program’s data while it is running.
They can be given names that are used to access the values they store, or they
can be accessed with pointers that hold their location. For the moment we will
concentrate on named variables, and leave pointers to §5.1.

Variable are used in expressions (see chapter 3) and to pass data into and
out of functions (see chapter 6). All C++ variables have a type that stipulates
the form of data they can hold. This can be a fundamental type or a class type.
The fundamental types are built into the language. Class types are supplied
as parts of the standard libraries, or they are programmer defined as part of a
C++ program. This chapter describes the fundamental types. A discussion of
classes begins in chapter 7. A type is specified when a variable is created:

int count; // a variable that holds a whole number

string name; // a variable that holds a string of characters

Here, int and string are types, and count and name are identifiers that are
the names of the variables.

2.6 The fundamental types

There are a number of simple types built into the language. There are integral
and floating types, which are collectively call arithmetic types. There is a
Boolean type for storing true and false values. And there are enumerations,
which are similar to integers.

Type Name Purpose

char a character
short int a short integer number
short the same as short int

int an integer number
long int a long integer number
long the same as long int

Storage size increases, or is equal, from
top to bottom of list

Table 2.1: Integral fundamental types

The integral types, in increasing size, are given in table 2.1. Notice that
char is an integral type. This means that, although variables of type char
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are normally used to store single characters, they can explicitly store numerical
values, and be used in arithmetic calculations.

All the integral types can be signed or unsigned. For example, unsigned int

or signed char. Unsigned integers cannot represent negative numbers, but
they can represent a larger positive value than can be stored in the equivalent
signed type. The signed integer types are synonyms for their plain versions, so
signed int is the same as int. The integral type normally used for arithmetic
is int.

There are implementation dependent limits on the size of a number that can
be stored as an integer. The size of the number that can be stored generally
increases from char, short, int to long, but on some computers short and
int are the same. The standard header file <limits.h> contains information
about the minimum and maximum values for the integral types. Some values
for a typical C++ compiler are given in table 2.2.

Type Minimum Value Maximum Value

char -128 127
short -32768 32767
int -32768 32767
unsigned int 0 65535
long -2147483648 2147483647

Table 2.2: Typical integral type ranges

An integer overflows if an attempt is made to store a number that is too
large. If this happens, the stored value will be incorrect but an error will not
be reported. However, many C++ compilers will issue a warning if overflow
is possible, for example when a long value is assigned to an int variable. An
overflowing signed integer incorrectly changes sign. So adding one to the maxi-
mum positive value for a particular integral type will give a negative result. An
overflowing unsigned integer wraps though zero, so adding one to a maximum
value produces zero.

Values of type bool can be either true or false. This is an integral type,
and bool values generally behave as signed integers although it is unwise to use
them as such. If bool variable or constant is used in an arithmetic expression,
false is converted to zero and true to one. Some older C++ compilers do
not support a bool type. In this case, int can be used instead, with zero
representing false and any non-zero integer representing true.

Type Name Purpose

float floating point number
double double precision floating point number
long double long floating point number

Precision increases, or is equal, from top to bottom
of list

Table 2.3: Floating point fundamental types

The varieties of floating point numbers, in order of increasing precision, are
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given in table 2.3. The characteristics of the real numbers are implementa-
tion dependent. Details of their ranges can be found in the standard header
<float.h>.

An enumeration is a user defined set of named integer constant values. Each
enumeration is a different type Each of the constants has the type of its its
enumeration. They look like this:

enum Colour { RED, YELLOW, GREEN };

In this example, the name RED represents the value 0, YELLOW is 1 and GREEN

is 2. Enumerated names can be given specific values, which can be calculated
from other constants:

enum Grade { GOOD = 100, AVERAGE = GOOD / 2, POOR = 0 };

A conventional style is to use capitals for the names of constants, and to begin
user defined type names with a capital. Hence the names GOOD and Grade.
Enumerations are not integral types but they can be promoted to integers when
required. Integral types can be converted to enumerations.

Enumerations can be declared without a type name:

enum { MIN = 20, MAX = 40 };

If this is done, the enumeration’s constant names are of type int, and they
behave like named integer constants (see §2.8).

2.7 Strings

A string is a sequence of characters which can include spaces and special charac-
ters such as tabs. There are two ways to store a character string in C++: in an
array of characters, or in a string object. Character arrays are the way strings
are handled in C programs, and they can also be used in with C++. However,
string objects are the best way to manage strings in a C++ program because
they are safer and easier to use.

The type of a string object is string, and it is used in much the same way
as a fundamental type. If string is used in a program, a header file called
<string> or its equivalent must be included like this:

#include <string>

...

string name;

name = "abc";

Character arrays are sometimes referred to as C strings, while string objects
are called C++ strings. C strings are explained in §5.3, and C++ strings in
§3.3.

2.8 Constants

Constants are values that do not change. They can be literals, which are actual
values, or named constants. A literal is just a value of a specific type. Literals
are used in expressions and declarations:
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price = cost + 6.4; // literal is 6.4

cout << "Alice"; // literal is "Alice"

int count = 0; // literal is 0

It is often convenient to give a value a name, and use this instead of a
literal. This makes programs much easier to understand and maintain. Named
constants are defined like this:

const int MAX = 100;

const Colour STOP = RED; // an enumerated type

const float PI = 3.142;

const float MAX_AREA = MAX * MAX * PI;

const string TITLE = "Management Report";

const char YES = 'Y';

For integers, enumerations are an alternative to named constants as a way to
define constant values. Enumerations and named constants must be declared
before they can be used.

There are literals corresponding to each of the fundamental types and a
string literal. The following are examples of integer literals: 1249234, 99, 0,
345U, 16777215L, 45UL, 0XFF and 010. Decimal, hexadecimal or octal notation
can be used. Integers beginning with a non-zero digit are decimal. The prefix
0x or 0X indicates hexadecimal notation, and numbers beginning with zero are
octal. So the number twelve can be written as 12, 0xC, 0Xc or 014. Commas
are not allowed. A suffix can be used to indicate a preferred type: U or u for
unsigned, and L or l for long. The actual type of an integer literal depends on
its prefix, value and suffix. The type is chosen to use the most compact internal
representation. Table 2.4 shows the possible choices.

Literal Format Choice in order of preference

1 2 3 4

0xFFFF or 0777 int unsigned long int unsigned

int long int

999 int long int unsigned

long int

999U unsigned unsigned

int long int

999L long int unsigned

long int

999UL or 999LU unsigned

long int

Table 2.4: Integer literal types

Character literals are written like this: 'a', 'D', ' ', '\n' and '\xaa'.
The \ character starts an escape sequence. An escape sequence specifies a
single character. A list of valid sequences is given in table 2.5. In the examples
above, \n is a new line character and \xaa is the character represented by the
decimal number 170.

Real or floating point literals are written like this: 3.127, .001, 5.6E3, 2e5L
and 4e-10F. Scientific notation can be used, where 5.6e3 means 5.6× 103. An
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Use Sequence

new line \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

alert (bell) \a

form feed \f

back slash \\

question mark \?

single quote \'
double quote \"

octal code \ooo
hex code \xhh

Table 2.5: Character escape sequences.

F suffix indicates a float andL a long double. The type is double if no suffix
is given.

String literals are sequences of characters in double quotes, such as the fol-
lowing:

"This is a string literal. It will sound the bell \a"

A string literal has the same type as an array of characters. This is called
a C string, and is described in §5.3. If two string literals are put next to each
other, they are concatenated even if there is a line break between them. So
these two are the same:

cout << "This "

"and this" << endl;

cout << "This and this" << endl;

The Boolean literals are true and false, and have the type bool:

bool found = false;

2.9 Simple input and output

Input and output are fully explained in chapter 14, but the following shows how
simple data can be input from a computer’s keyboard and written to its screen.
Input and output operations are performed using the standard stream library.
To use this library, <iostream.h> must be included in the program.

Use the << insertion operator with cout for output. The statement

cout << count << endl;

will print the value of count and start a new line. The exact format of the output
will depend on the type of count. Output can be controlled by manipulators
like endl and hex. The statement:
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cout << hex << count;

will print the value of count in hexadecimal notation. Some useful manipulators
are given in table 2.6. Take care, the effect of some manipulators lasts after the
statement in which it is used. For example, if decimal output is needed after
hex has been used with cout, then dec must be used before the value is output.

Manipulator Purpose

dec convert to decimal
hex convert to hexadecimal
endl add end of line and flush
setw(int w) set output field width

Remember to include <iomanip.h> if setw is used.

Table 2.6: Some useful output manipulators.

Use the >> extraction operator with cin for input. For example, the following
statement will input a value from the keyboard for the variable bookno:

cin >> bookno;

The following example program illustrates the use of the >> and << operators
by looking at some literals and constants:

#include <iostream.h>

const float PI = 3.142;

enum Grade { GOOD, AVERAGE, POOR };

void main()

{

cout << "I said \"Lets look at some constants\"." << endl;

cout << "This is a two line string\nSecond line" << endl;

cout << "This "

"and this" << endl;

cout << "This and this" << endl;

cout << "Some integers are " << 0xff << ", "

<< -1 << ", " << -1U << " and "

<< hex << -1U << '\n';
cout << "Some characters are " << '\x61'

<< " = " << 'a' << '\n';
cout << "Now some floating point values" << endl

<< 2.5 << ' ' << 0.25E10 << ' ' << 9E20 << ' '
<< 123456789.0 << endl;

cout << "Grades are " << GOOD << ' '
<< AVERAGE << ' '<< POOR << endl;

cout << "PI is " << PI << endl;

double width, depth;
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cout << "Give width and depth: ";

cin >> width >> depth;

cout << "width is " << width

<< " and depth is " << depth << endl;

}

This program produces the following output:

I said "Lets look at some constants".

This is a two line string

Second line

This and this

This and this

Some integers are 255, -1, 65535 and ffff

Some characters are a = a

Now some floating point values

2.5 2.5e+09 9e+20 1.23457e+08

Grades are 0 1 2

PI is 3.142

Give width and depth: 3.5 6.7

width is 3.5 and depth is 6.7

2.10 Exercises

1. (a) Type the demonstration program shown on page 7 into an appropri-
ately named file on your computer. Compile and run it. You might
have to do a bit of research to find out how use the C++ compiler
and program editor on your computer

(b) You may have managed to to write this program without any prob-
lems. To see what kind of faults can occur, try the following with
copies of your demonstration program:

i. Remove the semicolon from one of the statements in main.

ii. Remove the #include line.

iii. Change main to Main.

There is no model solution for this exercise.

2. Write a program that asks for your first name and then prints a hello
message with your name in it. Define a string in main to hold the name
with string name and include <string> or its equivalent.

3. Write a program that asks for two number and prints out their sum. Define
two float objects to hold the input data with float a, b. The addition
operator is +.



Chapter 3

Variables and Expressions

3.1 Variables

A variable is an area in memory where information is stored and can be ma-
nipulated. A data value can also be stored as a named constant, as discussed
in §2.8, but a constant cannot be modified. A variable has an address, which is
its location in memory. It has a type, which specifies what sort of data it can
hold and how it can be used. It can have zero, one or more names, and it has
a value. A variable can be accessed, and its value changed, by using one of its
names or through a pointer. A pointer is a variable that contains the address
of another variable or named constant. Pointers are explained in §5.1. In this
chapter we will look at named variables. Variables without names are discussed
later in §5.8.

A variable must be defined before it can be used. This gives it a type and
optionally an initial value:

int seats;

int count = 0;

float total;

int i, j, k;

float area = 3.4;

double x = 0.0, y = 0.0;

If an enumeration is given a type name, this can be used to define a variable:

enum Colour {RED,YELLOW,GREEN};

...

Colour door = YELLOW;

Once a variable has been declared it can be used. It can be assigned values
of the appropriate type:

count = 6;

total = 12.5;

area = 10;

door = RED;

And it can be used to calculate another value:

17
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area = 10.5 * count;

A variable’s scope describes the places in a program where it can be used.
A variable can be used after it has been declared, but it cannot be used outside
the block in which it is declared, where a block is a number of statements and
declarations enclosed in braces, { and }. The full scope rules include control
statements, functions, classes and name spaces, which are all discussed in later
chapters. But for the moment, the implications of scope are that a variable
declared inside main can only be used in main after its declaration. We say it
has local scope within main. A variable declared outside a block is said to have
global scope, and is available throughout the program after its declaration.

Variables are normally declared locally in main, but named constants are
often declared globally at the top of the program. A variable can be declared
anywhere in main before it is used. However, many programmers declare all
the variables together at the beginning of a block because this usually makes
the program easier to understand. If a name is used locally and globally, the
local name hides the global name. However, the global name can still be access
by prefixing the name with the :: operator as shown in the following short
program:

#include <iostream.h>

const int MIN = 0; // global constants

const int MAX = 100;

void main()

{

int count = 3; // local variable

cout << count << endl;

cout << distance << endl; // error - not declared

float distance = 25.7;

cout << distance << endl; // okay now

const int MIN = -20; // hide global name

cout << MIN << endl; // use local

cout << MAX << endl; // use global

cout << ::MIN << endl; // use global

}

3.2 Operators and expressions

An expression is a sequence of operators and operands that specifies a compu-
tation. It may result in a value and it may have side effects. Nearly all the
operators work with one or two operands: they are unary or binary. In general,
an operand can be an constant, a variable, a function, or another expression.
There are a lot of operators in C++. Some may be familiar, such as the arith-
metic operators + and *, which are addition and multiplication. Other are more
unusual. For example, there are operators for creating and destroying dynamic
objects, and for using pointers. In this section we will look at the operators most
often used to perform arithmetic or logical calculations. Other operators will
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be discussed in later chapters when appropriate. A full list of C++ operators is
given in appendix C.

An expression’s computed value depends on how its operands and operators
are grouped together. An operators behaviour is effected by its precedence,
which defines the relative priority of different operators, and by its associativ-
ity, which defines the grouping of operators with the same precedence. In the
expression 3 * 4 + 3 the operator * has a higher precedence than +, so the
grouping is ( 3 * 4 ) + 4. The expression 3 - 4 + 5 is similar but the op-
erators + and - have the same precedence and have left-to-right associativity,
so the grouping is ( 3 - 4 ) + 5. As this shows, the the rules in C++ are
compatible with the rules of normal arithmetic. There are rules for all the op-
erators. For example, the assignment operator = has right-to-left associativity,
so a = b = c groups a = ( b = c ).

The above examples use parentheses to show how expressions group. But
parentheses are actually used in expressions to explicitly form groups, possibly
overriding the default rules. The expression 3 + 4 * 5 is equal to 23, but
(3 + 4) * 5 is equal to 35. Parentheses are very important. Except in the
simplest cases, use parentheses to make expressions easy to understand. The
full rules are difficult to memorise, and parentheses can help to improve clarity.

In general, the order of calculation is not defined. The grouping of operators
with operands does not precisely define the order of evaluation. For example, the
expression a * b + c * d groups (a * b) + (c * d) but we cannot predict
if a * b or c * d will be calculated first.

Functions are often used in expressions. A function has a name, takes zero
or more arguments, and produces a value. There are functions that do not
return a value, but these are of no use in an expression. There are a number
of useful mathematical functions available in the standard library. They can
be used if the <math.h> header file is included in a program. For example, the
positive difference between two floating point numbers can be calculated with
the expression fabs(before-after). A full explanation of functions is given in
chapter 6.

3.2.1 Arithmetic operators

The arithmetic operators are shown in table 3.1. The operands of all these op-
erators must have arithmetic type. When an arithmetic operator has a mixture
of operand types, automatic conversions are performed. These are called the
“usual arithmetic conversions” and are given in appendix D. The purpose of the
conversion is to yield a common type for the calculation. Put simply, it converts
the operands to a type than maintains the precision of both operands. How di-
vide by zero and overflow are handled depends on the compiler and computer
being used. Most C++ implementations just ignore overflow.

Addition, subtraction, multiplication and unary minus are simple:

count + increment // addition

count - 4 // subtraction

width * height // multiplication

width * -depth // and with a unary negative

The division operator / is not quite as simple. It can be applied to floating
point and integer operands with different results. When it is used with int
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Operator Purpose

+ addition
- subtraction
* multiplication
/ floating point division
/ integer division - quotient
% integer division - remainder (modulo)
- unary minus

Table 3.1: Arithmetic Operators.

operands it gives the quotient. That is the whole number of times the right-
hand operand goes into the left hand operand. But if one or both of the operands
is a double or a float the result will a floating point number. So, 7.0 / 2 gives
3.5, while 7 / 2 gives 3. In the floating point calculation the int constant 2 is
converted to a double. Ensuring that a floating point division happens when
two int objects are involved needs a conversion. Given that a and b are type
int, the expression a / double(b) will force a floating point division. The %

operator gives the remainder after division. For example, 7 % 2 has the value
1. Both operands must be integers, so 7.0 % 2 is an error.

3.2.2 Assignment operators

The result of an expression can be assigned to a variable object with the = op-
erator, provided object and expression have compatible types. For example, the
following statement takes tax from gross_pay and puts the result in net_pay:

net_pay = gross_pay - tax;

An assignment operation has a result which has the type and value of its
left-hand operand. This can be used like the result of any other expression. So
the following are valid:

x = y = z

cout << ( x = 6 )

The first example assigns the value of z to x and y. In the second, the value 6 is
assigned to x and inserted into the output stream. In this case, the parenthesis
must be used. Without them the expression would group (cout << x) = 6,
which does not make sense.

Any expression can form a valid statement. So this is a statement which
does nothing worthwhile because its result is not used:

total + 9;

C++ provides an abbreviated form for expressions like x = x + 6, where a
variable is used to calculate a new values for itself. The expression x = x + 6

can be written as x += 6, and there are similar abbreviations for other opera-
tors. Table 3.2 gives a list of all the assignment operators.

The left-hand side of an assignment operator can be any expression that
computes to something that can be assigned a value. Simple variables meet
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Expression Purpose Equivalent

a = b simple assignment
a += b add and assign a = a + b

a -= b subtract and assign a = a - b

a *= b multiply and assign a = a * b

a /= b divide and assign a = a / b

a %= b remainder and assign a = a % b

a <<= b shift left and assign a = a << b

a >>= b shift right and assign a = a >> b

a &= b AND and assign a = a & b

a |= b OR and assign a = a | b

a ^= b EOR and assign a = a ^ b

Table 3.2: Assignment Operators.

expression equivalent

a = n++ a = n; n = n + 1;

a = ++n n = n + 1; a = n;

a = n-- a = n; n = n - 1;

a = --n n = n - 1; a = n;

Table 3.3: Increment and Decrement Operators.

this criteria, but so do references and dereferenced pointers. Anything that can
be used on the left-hand side of an assignment is called an lvalue. In a similar
manner, an expression that is valid on the right-hand side of an assignment is
called an rvalue.

3.2.3 Increment and decrement operators

The operator ++ adds one to, or increments, and -- subtracts one from, or
decrements, a variable of arithmetic type. They can be used before or after a
variable name with different effect. For example,

data = count++;

assigns the value of count to data, and then adds one to count. But the
expression

data = ++count;

adds one to count, and then assigns this new value to data.
The decrement operator -- behaves in a similar way. Never use an incre-

mented or decremented object more than once in an expression. For example,
after

i = 6 + i++;|

the value of i is undefined. Table 3.3 is a summary of the increment and
decrement operators.
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3.2.4 Bitwise operators

The bitwise operators allow individual bits in an integer to be altered. This kind
of processing is unnecessary in most programs. But these operators can be very
useful to systems programmers working with low level software components,
such as device drivers. The bitwise operators are summarised in table 3.4.

The bitwise AND operator is &. In the expression expr & mask, each bit
in mask is combined with the equivalent bit in expr using an AND operation.
If both bits are one, the result is one, otherwise the result is a zero bit. This
is useful for switching selected bits to zero. Bitwise OR and exclusive OR are
used in the same way. The OR operator is |. With this, if either bit in the
operands is one the resulting bit is one, otherwise it is zero. This is useful for
setting selected bits to one. The exclusive OR operator is ^. It produced a one
bit if one, and only one, of the bits being processed is one, otherwise the result
is a zero bit. This is useful for inverting the value of selected bits. The one’s
complement operator ~ is unary. It inverts the state of every bit in its operand.
The following examples show how these bitwise operators can be used:

iobyte = iobyte & 0x0F; // 4 low order bits unchanged

// all higher order bits set to 0

iobyte = iobyte | 0x0F; // 4 low order bits set to 1

// all higher order bits unchanged

iobyte = iobyte ^ 0x0F; // invert 4 low order bits

// all higher order bits unchanged

iobyte = ~iobyte; // invert the state of every bit.

iobyte = ~0xF0; // low order byte set to 0x0F

// all higher order bits set to 1

The shift operators << and >> move bits left or right respectively. Their
operands must be of integral type and the result is the type and value of the
left operand shifted by the number bits given by the value of the right operand.
The right operand must not be negative, or greater than or equal to the number
of bits in biggest supported integer.

Bits shifted out in either direction are discarded. Shifting left puts zeros in
the vacated low order bits. Shifting right will put zeros in the high order bits
if the right operand is an unsigned type or has a non-negative value, otherwise
the result is undefined. To protect against this, the right operand should be
declared as an unsigned type, or it should be converted for the shift:

unsigned int iobuff;

int signedbuff;

iobuff = iobuff << 2; // shift iobuff left 2 bits

iobuff = iobuff >> count; // shift iobuff right count bits

signedbuff = unsigned(signedbuff) >> 4; // safe shift right

The << and >> symbols have two meanings: shift left and right, and stream
insertion and extraction. The compiler can normally identify which operation
is required from its context. However, if the two uses are mixed in the same
expression, parentheses have to be used to ensure the correct grouping.

3.2.5 Relational and logical operators

C++ has a Boolean type called bool that can have two values: true and false.
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Operator Purpose

<< shift left
>> shift right
& bitwise AND
| bitwise OR
^ bitwise exclusive OR
~ one’s compliment

Table 3.4: Bitwise Operators.

All the relationship and logic operators produce results of type bool. Boolean
expressions are used in conditional statements which are described in chapter 4.

Some C++ compilers do not have a bool type, but int can be used instead.
The integer value 0 represents false, while any non-zero integer value represents
true. So, for example, the expression n - n evaluates to false, and 3 * 6 is
always true. The enumeration enum bool{false,true} can be used to simulate
a fundamental Boolean type. In either case, values of type int can be converted
to type bool.

The simplest relational operator is == which tests for equality. The expres-
sion 7 == 7 is true and 3 == 7 is false. Take care, a very common mistake,
which your compiler might not catch, is using the assignment operator = in-
stead of ==. The inverse of == is the not equal operator !=. The other relational
operators are less than, <, less than or equal, <=, greater than, >, and greater
than or equal, <=. These compare left operand to right operand. So a < b, is
read as a greater than b.

Relational expressions and Boolean variables or constants can be combined
using the logical AND operator &&, logical OR operator ||, and the NOT oper-
ator !. For example, n == 1 || m > 6 tests the assertion that n is equal to one
or m is greater than six. Parentheses are not required in this case because || has
a lower precedence than == or >. However, parentheses can be used for clarity,
so the above expression might be written as (n == 1) || (m > 6). As with
arithmetic expressions, parentheses can be used to explicitly control grouping.
For example, !(a && b ) is not the same as !a && b (it is actually the same
as !a || !b). Take care not to use the bitwise operators by mistake, a & b is
not a Boolean expression.

The left operand of || or && is always evaluated first, and the right-hand
operand is not evaluated unless it has to be. For example, 1 || n is always
true and n is not evaluated, while 0 && n is always false and n is not evaluated.

3.2.6 The conditional expression

This is a rather strange expression with three operands. It has the form:

expression-c ? expression-t : expression-f

When it is evaluated, expression-c is always calculated first. If the condition
represented by this sub-expression is true, the whole expression has the value
of expression-t, otherwise it has the value of expression-f. The types of
expression-t and expression-f must be compatible. An example which prints
a different message depending on a being even or odd is:



24 CHAPTER 3. VARIABLES AND EXPRESSIONS

Operator Purpose

== equal
!= not equal
< less than
<= less than or equal
> greater than
>= greater than or equal
! NOT
|| OR
&& AND

Table 3.5: Relation and Logic Operators.

cout << ((a % 2 != 0) ? "odd" : "even");

3.2.7 The comma operator

The comma operator is not used very often. Nevertheless, this operator should
be understood because it is easy to use by mistake, in a way that will slip past
the compiler.

A pair of expressions separated by a comma are evaluated left to right and
the value of the left expression is discarded. The type and value of the result
are those of the right operand. All side effects of the left expression are applied
before the right operand is evaluated.

In the context where comma has a special meaning, such as a list of argu-
ments to a function, the comma operator can only appear in parentheses. This
very strange function call is valid: f(a,(t=3,t+2),c). There are three argu-
ments. The value of the second argument is 5, and the function call assigns the
value 3 to t. Using a comma operator this way is not the kind of thing a sensible
programmer does and should be strenuously avoided. About the only time a
comma operator can be useful is with a for statement, which is discussed in
§4.2.3.

3.3 Strings

C++ variables of type string store a sequence of characters. The header file
<string> or its equivalent has to be included if string variables or named
constants are used. Do not confuse this with <string.h> which has a different
purpose. They are declared and initialised like this:

#include <string>

...

string name;

string errormess = "bad data";

string address1, address2;

String values can be assigned to string variables:

name = "Alice";



3.3. STRINGS 25

address1 = address2;

errormess = "";

Strings can be compared with the standard relational operators (see §3.2.5).
For example:

if ( address1 == address2 )

cout << "addresses are the same";

if ( name >= "Alice" )

cout << "value in name is greater than or "

"equal to Alice";

Strings are compared character by character, starting with their leftmost char-
acters. The comparison uses the character’s numerical code value. The strings
are equal if they are the same length, and all the compared characters are equal.
If two characters are not equal, the string containing the character with the nu-
merically larger code value is the greatest. If the end of only one of the strings
is reached with no unequal characters being found, the longer string is greater.
This may seem complicated, but it is just alphabetic ordering. For example,
"bigger" is greater than "big", "alice" is greater than "Alice", "hello " is
greater than "hello", and "bun" is greater than "ban".

Variables and constants of type string can be joined together with the +

operator. This is called concatenation:

fullmess = name + " is " + errormess;

The length of a string can be obtained and individual character in a string
can be accessed, as the following demonstrates:

for ( int i = 0; i < name.length(); i++ )

if ( name[i] == 'a' )

name[i] = 'A';

Here, every occurrence of a in name is changed to A. The length of the stored
string is provided by name.length(), and the individual characters are accessed
using the subscript operator []. Exactly how for and if statements work is
explained in chapter 4. The dot notation name.length can be used because
name is actually a class object. This is fully explained in chapter 7.

Input and output is simple using inserter and extractor operators:

string name;

cout << "Give your first name: ";

cin >> name;

cout << "Your name is " << name << endl;

However, reading in a string using >> will only input characters up to the
first space. To read in a string containing spaces, the function getline can be
used like this:

cout << "Give your full name: ";

getline(cin,name);
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This will input a complete line, including spaces, and store it in the string

variable name.
There is an alternative method of managing strings as an explicit array of

characters. This is the way strings are handled in C, and it is explained in §5.3.
However, the recommended approach is to use string variables as described
above. More information about the operations that can be performed on string

variables is given in appendix B.

3.4 Type conversions

C++ allows mixed mode expressions such as 2 + 3.5, which has an integer
and a floating point operand. Both operands must be the same type for the
computation, so implicit conversions are performed. Conversions are also used,
if needed, during initialisation and passing arguments to functions. These are
the “usual arithmetic conversions” and are described in detail in appendix D.

Sometimes it is necessary to force a value to be converted to a particular
type. For example, when both arguments are integers, float(a) / b performs
a floating point division. The expression float(a) converts the object a from
int to float. There are standard conversion defined in the language for most of
the fundamental types. But take care, conversions can throw away information.
This may be okay. For example, converting a floating point number to an
integer with int(3.6) discards the decimal part to give a value of 3. However,
some conversions can produce rubbish. If a long integer is converted to a int,
significant digits might be lost.

Enumerated types are automatically converted to integers when required,
but integers have to be explicitly converted to an enumerated type to avoid
an error or warning message. Floating point numbers can also be explicitly
converted to enumerated types. The conversion changes them to int and then
to the enumerated type.

Some conversions are not allowed. A constant, for example, cannot be con-
verted to a variable type. If absolutely necessary, this sort of thing can be done
with a cast. Casts are expressions that can be used to override the normal type
checking rules of C++. However, one form of cast, called a static_cast, can
be used for converting objects. Casts are explained in §13.2.

3.5 Side effects

A side effect occurs when an object is modified by the evaluation of an expres-
sion. For example,

sum = sum + i++;

adds the value of i to sum and, as a side effect, increments i. Technically, an
assignment has the side effect of modifying its left-hand operand, but normally
we do not treat this as a side effect.

The vague ordering of operations in C++ expressions can cause problems.
For example, we cannot predict the value of i after --i + i or i = 6 + i++;
and we do not know the argument values in f(--i,i++). There is some help.
All side effects are guaranteed to happen:
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• At the end of an expression statement.

• At a comma, ||, && or ?: operator, after the left most operand is evalu-
ated. The left operand is always evaluated first.

• To argument expressions before a function is entered. The order of eval-
uation of arguments is not defined.

3.6 Exercises

1. Value added tax (VAT) is 17.5%. Write a program that asks for a value;
then prints out the value, the VAT amount and the total cost. Make the
VAT percentage a constant, so that it is easy to change by editing the
code.

2. Write a program to calculate the area and circumference of a circle. The
area of a circle is given by a = πr2, and its circumference by c = 2πr.
Where r is the radius of the circle and π is approximately 3.1416.

3. If the integers a = 6, b = 2 and c = 9, what are the values of the follow-
ing expressions?

(a) b + c * 6

(b) c % b

(c) c / b + 4

(d) c / b + 4.0

(e) a - 4 != 3

(f) c / (a - 3 * b)

(g) a == 6 && b == 3

Write a small program to check your answers.

4. Given these declarations:

int i = 5;

int j = 1, k = 6;

What are the values of i after each of the following assignment statements?

i = j++ - --k;

i = k * -i;

i = j * i++;

Write a small program to check your answers.

5. An int called motor controls the operation of an electric motor. The low
order bit (bit 0) selects the direction: 1 is forward and 0 is reverse. The
next bit (bit 1) switches the motor on and off: 1 is on. All the other bits
should be set to 1. Write expressions to

(a) Initialise the motor control word.
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(b) Switch the motor on in the forward direction.

(c) Switch the motor off without changing the direction bit.

(d) Switch the motor on without changing the direction bit.

(e) Change the direction of the motor to the opposite of its current state.



Chapter 4

Controlling Execution

4.1 Selection statements

The ability to choose which statements are executed, based on some condition,
is one of the most important features of a programming language. C++ provides
two ways to do this: the if statement and the switch statement.

4.1.1 If statement

An if statement is used to optionally execute a statement, or to choose between
two statements, depending on a condition. There are two formats for an if

statement:

if ( condition ) statement t

if ( condition ) statement t else statement f

In the first case, statement t is only executed if condition evaluates to true.
In the second, either statement t is executed, if condition is true, or statement f,
if it is false. In both cases execution continues with the statement following
the if statement. The statements, statement t and statement f can be replaced
by a block (also called a compound statement). So several statements can be
used where one is expected:

if ( amount <= 10 )

cout << amount << " items will be delivered" << endl;

else {

cout << "Too many items for one delivery" << endl;

amount = 10;

}

Nested if statements are common:

if ( ... ) // if#1

if ( ... ) // if#2

...;

else // else if#2

...;

29
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In a nested if statement an else is connected with the last encountered
else-less if. So, in the above example, the else is connected to if#2. A block
can be used to override this relationship. So the else associates with if#1 in
the following:

if ( ... ) { // if#1

if ( ... ) // if#2

...;

}

else // else if#1

...;

A variable or named constant declared in an if substatement has local scope,
even if it is a single statement. This means that we cannot have conditional
declarations. After

if ( ... )

int i;

the object i is not in scope and cannot be used. However, if a block is used
the object is available within that local scope:

if ( ... ) {

int i;

// i can be used

}

// i is not defined

The draft ANSI standard proposes that a variable can also be declared in the
condition of an if statement. Such a variable must be initialised and it cannot
have the same name as any declaration in the substatements of the if statement.
The name is in scope from the declaration to the end of the statement. The
value of the condition is the value of the initialised variable.

4.1.2 Switch statement

In a switch statement control is passed to one of a number of statements de-
pending on a condition. It has the form

switch ( condition ) statement

where condition is an integral type (or a class object that can be converted to
an integer). The body of the switch is statement. This is a block containing a
number of statements and case labels. A case label is

case constant expression :

There can also be one default label:

default :

Control is passed the case label that has a constant expression equal to condi-
tion. Duplicate case labels are not allowed in the same switch statement. If
no match is found, control is passed to the default label or to the statement
after the switch statement.
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A case or default label defines an entry point. A switch statement does
not finish when the next label is encountered. To terminate the execution of a
switch, a break statement must be used. This may sound very complicated,
but in practice it is simple:

switch ( ans ) {

case 'y':
case 'Y':

cout << "Resetting totals" << endl;

stock_total = 0;

break;

case 'n':
case 'N':

cout << "Totals not modified" << endl;

break;

default:

cout << "Invalid reply. Please try again" << endl;

}

Take care, if a break statement is missed out by mistake, execution will fall
through into the next case label’s statements. There will be no compilation
error generated.

Names can be declared in the body of a switch statement. They are in
scope from the declaration to the end of the switch statement. The draft ANSI
standard proposes that variables can also be declared in the condition of a
switch statement. Such a variable must be initialised, and this value is given
to the condition.

4.2 Iteration statements

Iteration statements control the repeated execution of particular parts of a pro-
gram. They are loops. There are three in C++: the while, do and for state-
ments. To some extent these are interchangeable, but they are specialised to be
useful in different situations. All of these statements check a Boolean expression
to see if the iteration should continue. The value of this expression should be
affected by the execution of the loop. If it is not, once the loop starts it can
never finish.

4.2.1 While statement

A while statement executes a statement, or block of statements, zero or more
times, while a condition evaluates to true. Its form is

while ( condition ) statement

The body of the while loop can be a single statement or a block, which is
executed as long as condition evaluates to true. The condition is evaluated
before each execution of the loop. If it evaluates to false the first time, the
body of the while statement will not be executed. The following calculates the
sum of a sequence of numbers entered at the terminal:
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int number = 0, sum = 0;

cout << "To stop enter a negative number" << endl;

while ( number >= 0 ) {

sum += number;

cout << "number: ";

cin >> number;

}

cout << "Sum is " << sum << endl;

Names, such as variables and named constants, can be declared in the body
of a while statement. They are in scope from their declaration to the end
of the while statement. They are created and initialised during each pass
through the loop and destroyed at the end of that iteration. The draft ANSI
standard proposes that variables can also be declared in the condition of a
while statement. Such a variable must be initialised, and this value is given to
condition.

4.2.2 Do statement

A do statement executes a statement, or block of statements, one or more times,
until a condition evaluates to false. Its form is as follows:

do statement while ( condition );

The body of the do loop can be a single statement or a block. This is
executed once before condition is evaluated. If condition has the value true,
the body of the loop is repeated. The condition is evaluated at the end of each
iteration, and the loop repeats until it becomes false. As an example, here is
a do statement which inputs a value for an integer called number:

int number;

bool goodnumber;

do {

cout << "Give a whole positive number: ";

cin >> number;

if ( number >= 0 )

goodnumber = true;

else {

cout << "Incorrect, number must be positive."

<< endl;

goodnumber = false;

}

} while ( !goodnumber );

Take care, the last line of a do statement can easily be confused with a while

statement.

4.2.3 For statement

The for statement has the following form:

for ( dec or expr ; condition ; expression ) statement
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Where dec or expr is either a declaration or an expression, and condition is
a Boolean expression. This, with a minor difference relating to the continue

statement discussed in §4.3, is equivalent to a while statement that looks like
this:

dec or expr;
while ( condition ) {

statement
expression;

}

First, and only once, the expression or declaration dec or expr is performed.
Then condition is checked. If it evaluates to false the first time, the body of
the for statement is not executed. If condition is true, the body of the for

statement is performed and expression is executed. Then condition is checked
again, and so on until condition evaluates to false.

The condition or expression parts of a for statement can be omitted, but
if condition is not present the for will loop forever. The scope of any names
declared in dec or expr extends only to the end of the for statement. Unfor-
tunately, some compilers do not implement this ANSI C++ scope rule, and a
variable name declared in dec or expr will exist outside the body of the for

statement.
The for statement is most useful for loops that use a variable that goes

from a starting value, in fixed steps to a final value. This is very common when
processing arrays (see §5.2), but for a non-array example consider:

for ( int i = 1; i <= 5; i++ )

cout << i << ' ' << (i * 2) << endl;

Here, the integer variable i is declared and given an initial value of 1. Before
each iteration the value of i <= 5 is calculated. If this is true, the body of
the for statement is executed. When this is done the value of i is incremented
by one with i++. The effect of this loop is to execute an output statement five
times. Each time providing a new value of i counting from 1 to 5.

As with the other iteration statements, variables and named constants can
be declared in the body of a for statement. As a matter of style, the controlled
variable declared in the dec or expr part of a for statement should not be
modified in the body of the loop.

Nested for loops are useful when more than one controlled variable is needed:

for ( int i = 1; i <= 2; i++ )

for ( int j = 5; j <= 6; j++ )

cout << i << " with " << j << endl;

This generates a sequence of i and j pairs: 1 – 5, 1 – 6, 2 – 5, and 2 – 6.
Comma operators are sometimes used with for statements. For example,

the following produces the sequence 1 – 5 and 2 – 6:

int i, j;

for ( i = 1, j = 5; i <= 2; i++, j++ )

cout << i << " with " << j << endl;

However, this is not very easy to understand. The following, with out the
commas, is much better:
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int j = 5;

for ( int i = 1; i <= 2; i++ ) {

cout << i << " with " << j << endl;

j++;

}

4.3 Jump statements

A break statement can be used in a switch, while, do or for statement to
terminate its execution. When a break statement is encountered control passes
to the statement following the terminated statement. Use of the break state-
ment, except in a switch statement, should be treated with suspicion. They
can confuse the structure of a program. In most cases, the condition that will
cause a break to be executed can be incorporated in the condition part of the
statement.

A continue statement can be used with a while, do or for statement to
skip to the end of its current iteration. In a do or while control is passed
immediately to the condition part of the statement. In a for statement the
expression part is performed before condition to ensure that controlled variables
are managed consistently. Take care when using a continue with a while or
a do. A continue can bypass the part of a loop that modifies the variable
tested in the loop’s condition, causing unexpected behaviour. The following
for statement illustrates how break and continue work:

for ( int i = 1 ; i <= 20 ; i++ ) {

if ( i == 2 ) continue;

if ( i == 5 ) break;

cout << "i is " << i << endl;

}

Here, the for statement is specified to loop twenty times, with i going from 1 to
20. However, when i is equal to 2, a continue is executed and the rest of that
particular iteration is skipped, so i is not printed. The for statement continues
until i equals 5, when a break statement is executed which terminates the for

statement. Thus, the variable i is only printed when it has the values 1, 3 and
4.

C++ has a goto statement which will unconditionally pass control to a
labeled statement in the same function:

void silly()

{

cout << "silly entered" << endl;

goto end;

cout << "will not print" << endl;

end:

cout << "silly finished" << endl;

}

The goto statement should not be used except under exceptional circum-
stances. The ill considered use of goto statements can produce very poor pro-
grams that are difficult to test and maintain. In almost every case the use of a
selection or iteration statement is a much better choice.
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4.4 An example

The following program prints multiplication tables. It uses while, do, for, if
and switch statements. The overall structure of the program is simple. The
outer while loop controls the printing of a whole multiplication table. First
the user of the program is asked which table is wanted. This is done with a do

loop. The table is actually printed with a for loop. Finally the user is asked if
another table is wanted. The reply is processed by a switch statement which
sets the condition controlling the outer while loop.

#include <iostream.h>

#include <iomanip.h>

const int TOP = 12;

void main()

{

cout << endl;

cout << "Tables Print Program" << endl;

cout << "--------------------" << endl << endl;

bool more = true;

while ( more ) {

int table;

bool goodans;

do {

cout << "Give required table (2 to 12): ";

cin >> table;

if (table >= 2 && table <= 12)

goodans = true;

else {

cout << "Table must be in range 2 to 12, "

"please try again" << endl;

goodans = false;

}

} while ( !goodans );

cout << endl;

for ( int i = 1; i <= TOP; i++ ) {

cout << table << " x " << setw(2) << i

<< " = " << table * i << endl;

}

char ans;

cout << endl << "Another table ( y or n ) ";

cin >> ans;

switch ( ans ) {

case 'Y':
case 'y':

more = true;

break;

default: // 'n' and 'N'
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more = false;

}

}

}

4.5 Exercises

1. Write a program to calculate the sum of the integers between two values
input at the terminal.

2. Calculate the factorial of a value input at the terminal. The factorial of
an integer n is given by n! = 1× 2× 3× ...× n. By convention 0! = 1.

3. Write a short program to print out a character’s binary code. You may
assume that a char is 8 bits long. For example, given the character S,
the program should print 01010011 on a machine using ASCII coding. (A
hint: the right most bit of a negative number is 1.)

4. Iteration can be used to numerically solve some mathematical problems.
For example, the values of x for which x3 − x− 1 = 0 can be found using
Newton’s method. In this case, the method involves finding successive
values of x using the formula:

xn+1 = xn −
x3n − xn − 1

3x2n − 1

The result will converge to the required value of x.

Write a program to perform this calculation. Stop when the difference
between successive values of x is less than or equal to 0.001. To calculate
the difference used the standard function fabs, which returns the abso-
lute value of a floating point number. Include the standard mathematics
library <math.h> for this function.

5. Write a program that prints a multiplication matrix, like this:

1 2 3 . 12

2 4 6 . .

3 6 9 . .

4 . . . .

. . . . .

12 . . . .



Chapter 5

Compound Types

5.1 Pointers

A pointer is an object that holds the location of another object. It is typed, so
it can only point to objects of a particular type. To declare a pointer, an * is
used with a type name. So the following declares a pointer to an integer:

int* pntr2int;

To use a pointer it must first be given a value, which is the address of a suitably
typed object. The prefix & operator can be applied to the name of a variable or
constant to get its address. This can be assigned to a pointer of the correct type,
or used to initialise it. A pointer can be also be used to assigned or initialise
another pointer of the same type:

int anint; // an integer variable

float afloat; // a floating point variable

int* pntr2int; // a pointer to an int

pntr2int = &anint; // assign a pointer

pntr2int = anint; // error - aint is not a pointer

pntr2int = &afloat; // error - afloat is not an integer

float* pntr2float = &afloat; // initialised pointer to float

int* anotherpntr = pntr2int; // initialised pointer to int

To access the object being pointed at, a pointer must be dereferenced. This
is done by preceding the pointer name with an *. The type of a dereferenced
pointer is the type of the object being pointed at. For example,

*pntr2float = 6 * *pntr2int;

Here, an integer value is multiplied by six, and the result is assigned to a floating
point variable. Take care, arithmetic can be performed directly on a pointer. So
the expression *pntr2int++ is valid, but it adds the physical length of an int

variable to the pointer rather than adding one the int object pointed to. Paren-
theses are used to resolve the problem: (*pntr2int)++. There are a number
of ways a pointer can be combined with an increment or decrement operator.

37
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Equivalent Syntax Meaning

++(*p) ++*p pre-increment object pointed to
(*p)++ (*p)++ post-increment object pointed to
*(++p) *++p access via pointer that has been incremented
*(p++) *p++ access via pointer, post-increment pointer

Table 5.1: Pointers and increment operators.

Table 5.1 shows the possibilities. However, pointer arithmetic normally only
makes sense in the context of arrays, and this is explored in §5.2.1.

The value of a pointer can change while a program is running. So the same
dereferenced name can refer to a different object at different times:

int count1, count2;

int* counter = &count1;

*counter = 3; // refers to count1

counter = &count2;

*counter = 6; // refers to count2

This feature is very useful for implementing dynamic data structures (see §5.4),
and for supporting polymorphism with class objects (see chapter 11), but it can
be very confusing if used carelessly.

A pointer that temporarily points to nothing can be given a zero value. This
is called a null pointer. Any attempt to dereference a null pointer will cause a
run-time error:

int* p2int; // pointer value undefined

p2int = 0; // a null pointer

*p2int = 294; // run-time error - invalid pointer

p2int = &count // assign a valid address

*p2int = 294; // okay now

p2int = 375; // error - non-zero integer

The const qualifier can be used with a pointer to restrict its behaviour. We
can have a constant pointer, a pointer to a constant object, or both. Table 5.2
shows the possible combinations. Like any other constant, a const pointer has
to be initialised, and it cannot be modified. A pointer to a const object can
hold the address of a constant or non-constant object. In either case the object
cannot be modified via the pointer. The address of a const object cannot be
stored in a pointer to a non-const object. The following demonstrates these
restrictions:

int anint, anotherint;

int* const constp2int = &anint; // constant pointer must be

// initialised

constp2int = &anotherint; // error - cannot modify

// constant pointer

const int* p2constint; // a pointer to a constant

p2constint = &anint; // okay to point to a
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Declaration Type of p

T* p; pointer to an object of type T

const T* p; pointer to a constant object of type T

T* const p; constant pointer to an object of type T

T const *p; constant pointer to an object of type T

const T* const p; constant pointer to a constant object of type T

Table 5.2: Constant pointer declarations.

// non-constant

*p2constint = 37; // error - cannot modify it

const int CONSTINT = 10;

int* p2int;

p2int = &CONSTINT; // error - cannot assign

// const int* to int*

When a pointer is declared, the * operator actually associates with the object
name rather than the type name. So in

int* p2int1, p2int2; // possible mistake

p2int2 is an int, not a pointer to int. The compiler will catch this when the
variable is used, and it is easy to fix. Either declare each pointer as a separate
statement, or write it like this:

int *p2int1, *p2int2;

The use of pointers with arrays and structures is discussed in §5.2.1 and
§5.4.1.

5.2 Arrays

An array is a collection of objects of the same type. Each element of an array is
accessed using one or more subscripts, depending on the dimension of the array.
For example, a one dimensional array of five integers called total is declared
like this:

int total[5];

The elements of total are accessed using the subscript operator []:

total[3] = 5 + total[2];

The first element of an array has the subscript zero. The last element has a
subscript one less than the declared size of the array. So, for example, total[0]
and total[4] are the first and last elements if the above array. C++ arrays
are not bound checked, so it is easy read or write off the end of them, with
unpredictable results. This can damage data or even crash a program. It
is likely that the emerging ANSI standard for C++will include one or more
libraries that provide bound checked alternatives to ordinary C++ arrays.
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An array object cannot be modified as a whole. In particular, one array
cannot be assigned to another, even if it has the same type and size. This kind
of operation has to be done on an element by element basis:

float insidetemp[10];

float outsidetemp[10];

...

insidetemp = outsidetemp; // error

for ( int i = 0; i < 10 ; i++ ) // okay

insidetemp[i] = outsidetemp[i];

insidetemp++; // error

for ( int j = 0; j < 10 ; j++ ) // okay

insidetemp[j]++;

An array can have an initialiser, which is a list of values for array elements
in subscript order:

int total[5] = { 3, 5, 2, 5, 8 };

If the initialiser has too few items to fill the array, zeros are added. It is an
error to have too many items, and the list must contain at least one item:

int total1[5] = { 23, 65 }; // is the same as ...

int total2[5] = { 23, 65, 0, 0, 0 };

int total5[5] = {0}; // all elements are zero

int total3[5] = { 23, 65, 0, 0, 0, 0 }; // error - too many

int total4[5] = {}; // error - must be at least one

The size of the array can be omitted if an initialiser is used. So the following
declares an array of three double numbers:

double size[] = { 3.7, 5, 2 };

An array can be declared as a constant. None of the elements of such an
array can be modified:

const double MAXSIZE[3] = { 1.5, 2.5, 3.5 };

MAXSIZE[0] = 3.6; // error

Multidimensional arrays are easy to define. For example, the following is an
initialised array with three rows and two columns:

int matrix[3][2] = {{1,2},{3,4},{5,6}};

Like its one dimensional counterpart, a multidimensional array initialiser
does not have to be complete, and missing elements are given a zero value.
However, only the first dimension size can be omitted:

int matrix1[3][2] = {{1},{3,4}};

int matrix2[][2] = {{1,2},{3},{5,6}};

int matrix2[][] = {{1,2},{3,4},{5,6}}; // dimension error

Access to an element of a multidimensional array needs as many subscripts
as there are dimensions For example,
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matrix[1][0] = matrix[2][1] + 6; // access and assignment

// add one to every element of matrix ...

for ( int row = 0; row < 3 ; row++ )

for ( int col = 0; col < 2 ; col++ )

matrix[row][col]++;

5.2.1 Pointers and arrays

Pointers and arrays have a special relationship. An array can be converted into
a pointer to the first element of the array, and a pointer to an array can be used
as though it were an array name:

int test[10];

int* p2test = test; // convert array to pointer

*p2test = 24; // change test[0]

p2test[2] = 32; // use pointer as array

If an array is declared as const, any associated pointers must be declared
as pointing to a constant object:

const int carray[] = {1,2,3,4,5};

const int* p2carray = carray; // this is okay

int* p2carray = carray; // error - not a pointer to const

*p2carray = 99; // error - array is const

Simply demonstrated, an ability to treat a pointer as though it were an array
name may appear to be pointless, but it makes managing dynamically allocated
arrays easy. How this is put into practice is discussed in §5.8.

Arithmetic can be performed on pointers that automatically takes account
of array element size. This is simplest for one dimensional arrays. For example,
given an integer array declared as int test[ASIZE], the following will print it
out:

int* p2array = test; // address of test array

for ( int i = 0; i < ASIZE; i++ )

cout << *p2array++ << ' ';
cout << endl;

Here, the location of an integer array is converted into the pointer p2array.
Then, in the for loop, the expression *p2array++ dereferences the pointer to
print the value of an array element, and then increments p2array to point at
the next element of the array. Table 5.1 shows the ways in which pointers
and increment operators can be combined. However, the use of pointer arith-
metic instead of subscripts is not recommended. Pointer arithmetic is popular
with some traditional C programmers because it can be quicker, but subscripts
are much easier to understand, and in practice the gain in efficiency is often
marginal.

If pointer arithmetic has to be used, then a knowledge of how arrays are
physically stored is required. Array elements are stored in consecutive memory
locations. For multidimensional arrays, the elements are stored so that in effect
the right most subscript varies fastest. So for int a[4][3], which is an array
with four rows of three integers, the first three elements in store are the first
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row’s int values in subscript order. These are followed by the second row’s
elements, and so on. Handling a multidimensional array is further complicated
because it does not automatically convert into a pointer to its first element, so
an explicit reinterpret_cast is required (see §13.2.3.

5.3 C strings

A C string is a sequence of characters stored in an array of char of sufficient
length. The sequence is terminated by a NUL character which is written as
'\0'. So this is a C string:

char dog[5] = { 'C', 'l', 'e', 'o', '\0' };

It is much more convenient to used string literals for initialising character
arrays. The literal must able to fit into the array:

char dog[5] = "Cleo"; // just enough room

char littledog[7] = "Moss"; // more than enough room

char terrier[] = "Penny"; // array size is 6

char anotherdog[7] = "Brollie"; // error literal too long

Be careful when choosing the length of a char array. It must be at least one
character longer than the longest string it will have to store, because it must
be able to store a terminating zero. If special characters, like \n, are used in a
string, they are stored in a single character.

Like any other array, a string cannot be directly assigned to another string.
A string has to be explicitly copied character by character. However, there
is a standard C string library that offers a number of useful string functions,
including strcpy which copies one string to another, strcmp which compares
strings, and strlen which gives the length of a string, excluding its terminating
NUL character. The header file <string.h>, not to be confused with <string>,
must be included if these functions are used. The following shows some of the
ways that C strings can be used in C++:

#include <string.h>

char dog1[10] = "Cleo";

char dog2[] = "Brollie";

char dog3[10];

// Explicit string copy from dog2 to dog3

int i = 0;

while ( dog1[i] != '\0' ) {

dog3[i] = dog1[i];

i++;

}

dog3[i] = '\0';

// Using string library copy function to copy dog2 to dog3

strcpy(dog3,dog2);
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// Using string compare

if ( strcmp(dog1,"Cleo") == 0 ) // strings equal

cout << "Cleo found" << end;

if ( strcmp(dog1,"Cleo") < 0 ) // dog1 < "Cleo"

cout << "Cleo after" << end;

if ( strcmp(dog1,"Cleo") > 0 ) // dog1 > "Cleo"

cout << "Cleo before" << end;

// Using string length

cout << strlen(dog1) << end;

C strings can be declared as constants, which must be initialised:

const char TERRIER[] = "Penny";

strcpy(TERRIER,dog2); // error - cannot modify constant

C strings can be formed into arrays. An array of C strings can be defined
as a two dimensional array of characters like this:

char [5][10] dogs;

char [5][10] moredogs = {"Rover","Fido"};

Both of the above are arrays of five strings each able to hold up to nine
characters. An alternative, and preferred, style is to introduce a typedef name.
These names are discussed in §5.6, but the following shows how one can be used
for a C string:

typedef char DogString[10];

DogString dogs[5];

DogString moredogs[5] = {"Rover","Fido"};

C strings are are very common in C++ programs, but they have limitations
such as no bounds checking, and restricted copy semantics. C++ string objects,
described in §3.3, are much safer and easier to use. If it is necessary, a C++

string variable or constant can be converted to a C string like this:

char newdog[20]; // C string

string mydog = "Penny"; // C++ string

strcpy(newdog,mydog.c_str()); // C++ string copied to C string

5.4 Structures

Many languages offer a record type. In C++ this is called a structure. In an
array all the elements are the same type, but in a structure the elements (or
members) can be of different types. For example, the following is a structure of
type Account that has two data members:

struct Account {

int number;

float balance;

};
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Members cannot be given initialisers in the struct declaration. But an ini-
tialiser can be specified when an instance of the structure is defined. This gives
values for the structure’s members in the order they appear in its declaration. A
instance of a structure can also be used as an initialising value. So for example,
instances of Account can be defined like this:

Account myaccount;

Account savings = myaccount;

Account expenses = { 1293, 12.56 };

const Account SPECIAL = { 9999 , 10.00 };

The members of a struct object are accessed with a dot operator:

myaccount.balance = 56.02;

current = expenses.number;

cout << SPECIAL.balance;

SPECIAL.number = 7893; // error - cannot modify constant

Structures of the same type can be assigned to each other, which applies a
copy operation to each member in turn. However, most other operations are
not supported:

myaccount = expenses; // assignment okay

if ( myaccount == expenses ) // error

...;

myaccount++; // error

There is an alternative way to define an instance of a struct. A struct

declaration can be immediately followed by an instance name. The struct

name can be omitted if no other instances of the structure are wanted:

struct {

int amember;

} aninstance;

Structures and classes have a lot in common. Class features, such as member
functions and constructors, can also be used with structures. (A structure is
actually just a class with default public access.) There is much more about
classes later, starting in chapter 7.

5.4.1 Pointers and structures

Structures can be accessed with pointers. This is done by explicitly dereferenc-
ing the pointer and using the dot operator, or by using the -> operator:

Dog* p2dog = &mydog; // pointer to a Dog

(*p2dog).age = 4; // dot notation

p2dog->age = 4; // -> notation

Here, the two assignment statements are equivalent. If the * operator is
used, the dereferenced pointer must be enclosed in parentheses. Failure to do
this will generate an error because the dot operator will be applied directly to
the pointer, which is not a structure. The -> operator is the preferred method
because of its simplicity.

A structure can contain a member that is a pointer to an instance of itself:
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struct Node {

int data;

Node* next;

};

Such a pointer is used to connect two instances of the structure:

Node node1, node2;

node1.next = &node2;

node1.next->data = 67;

Here, the next member of node1 is used to modify the data member of node2.

5.5 Unions

A union looks similar to a struct, but the different members of a union are
alternatives stored in the same place. So only one member can be stored in a
union at a time. For example the following structure can store a float, an int

or a char in its union part:

enum Vdatatype { VFLOAT, VINT, VNAME };

struct Vardata {

Vdatatype utype;

union {

float afloat;

int anint;

char name[8];

};

};

Here, the utype member indicates what type of data is currently being stored
in union. But there is no automatic check, so a union can be misused:

Vardata store;|\\

store.utype = VNAME;|\\

strcpy(store.name,"fred");|\\

store.afloat += 1.2345; // valid but ...|\\

// woops - assigning the wrong type of data to union

A union can also be given a name and used like a structure in its own right:

union Dataunion {

float afloat;

int anint;

char name[8];

};

Dataunion udata;

udata.anint = 5;
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Unions are dangerous because, it is very easy to access data using the wrong
member. However, they can offer considerable space optimisation for variant
data. In general they are best avoided. But, if they are used, encapsulate
them in a class, and provide safe access via member functions as explained in
chapter 7.

There are some restrictions on how a union can be specified and used. It
can have member functions, like a C++ class (chapter 7), but it cannot have
virtual functions (chapter 11). It cannot have a base class or be used as a base
class (chapter 10). A union cannot contain data members that are instances of
classes with constructors (§7.2), destructors (§7.3), or user defined assignment
operators (§9.2.2).

5.6 Typedef names

Alternative type names can be declared using a typedef specifier. A typedef

name is just a synonym for another type, and it can only be used in the same
way as the original. The original type name is still available, and a single type
can be given several different typedef names. A typedef does not introduce a
new type in the way a class, structure or enumeration does. For example, given
these typedef statements:

typedef char* Cstring;

typedef int Vector[3];

The following pairs of declarations are equivalent:

Cstring a; char* a;

Cstring b, c, d; char *b, *c, *d;

Vector v; int v[3];

A typedef name obeys the same scope rules as other names. A typedef

name can be declared more than once in the same scope if the declarations are
identical. Otherwise typedef names must be unique within their scope. The
following example shows how these rules work:

struct Mystruct {

typedef float Value; // local to Mystruct

Value avalue; // type is float

};

void funct()

{

typedef char Value; // local to funct

Value avalue; // type is char

}

typedef int Value;

typedef Value Anothername; // okay - a typedef can use a

// typedef name

typedef int Value; // okay - typedef can be repeated

typedef float Value; // error - different type to
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// previous typedef

typedef int Mystruct; // error - name already declared

void main()

{

Value avalue; // type is int

}

The use of typedef is generally a matter of style. Some programmers use
them a lot, others not much, if at all. They can help with the definition of
C strings and the dynamic allocation of multidimensional arrays, as shown in
§5.3 and §5.8. A typedef is often used to hide the explicit use of * in pointer
definitions. They can be used to introduce meaningful type names, and they
are often used in libraries to improve portability.

5.7 Reference types

A reference is an alternative name for an object. They are normally used with
function parameters (see §6.2), but they can be used independently. A reference
type is specified by putting & after a type. So X& means reference to X. For
example,

int i = 2;

int& r = i; // r and i refer to same variable

int j = r; // j = 2

r = 6; // i = 6

References must be given a value when they are defined. A variable reference
must be initialised to an lvalue, but a constant reference can be initialised to a
constant:

int& i = 2; // error

const int& j = 2; // ok

Do not confuse pointers and references. They can sometimes be used to
achieve the same result, but it is best to make a clear distinction to avoid
confusion. Use reference types for function parameters and return values, and
use pointers for memory management and dynamic data structures.

5.8 Memory management

Pointers and dynamic memory management are closely related. Computer mem-
ory can be explicitly allocated and deallocated while a program is running, and
pointers store memory locations. Memory is allocated by creating objects with
the new operator, which returns the location of the created object. This location
is stored in a pointer of the correct type:

int* p2int = 0; // pointer initialised as null

p2int = new int; // allocate memory for an int

float* p2float = new float(67.3); // an initialised float

Dog* mydog = new Dog; // a Dog struct
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Most objects created with new can be given an initial value, as show with
p2float. Structures, like classes, can be given an initial value, but this involves
constructors which are described in §7.2 and §8.3. It is often important to be
able to identify a pointer that does not currently hold the location of an object.
This is done by giving the pointer a zero value, which is called the null pointer.

A dynamically allocated object has no name and can only be accessed with a
pointer that holds its location. The pointer is simply dereferenced to gain access
to the object’s data. If the object is a structure (or a class), the -> operator is
used to access its members:

*p2int = 45 + *p2int / 5;

mydog->age = 2;

An object created with new has dynamic storage duration. This means the
its lifetime is not limited to its scope. It exists for the lifetime of the program,
or until it is destroyed with the delete operator. This operator is used on a
pointer to the object to be destroyed:

delete p2int;

delete mydog;

Never use a pointer value after it has been used with a delete operator. A
delete operator can only be applied to pointer values created with new, or to a
pointer with a zero value. Applying delete to a zero pointer has no effect. A
delete operator cannot be used with a pointer to a constant object.

There is no automatic garbage collection in C++. Destroying a pointer or
overwriting a pointer value will not destroy the object pointed to, or reallocate
its memory. A delete operator must be used before a pointer value is thrown
away. Failure to do this will cause a memory leak. Always remember that the
definition of a pointer does not, in itself, allocate any storage for the target
object. A common error is to define a C string as say char* name, and then
fail to load it with a pointer value. This looks like a valid string, so it can be
used with something as simple as strcpy(name,"abcd"), which will seriously
damage the program.

If a new operation fails, most compilers will throw an exception called some-
thing like alloc or bad_alloc. Exceptions are explained in §13.1, but here it
is enough to know that if nothing is done to manage the exception the program
will be terminated.

As an example of how to use new and delete, the following demonstrates
how a dynamic data structure can be built using a struct and some pointers.
It is a stack implemented as a linked list. A stack is a data store that has
first-on last-off behaviour. Putting items into a stack is called a push operation,
and the removal of an item is called pop. So a pop retrieves the most recently
pushed item from a stack. A linked list is a sequence of dynamically allocated
structures (or classes) connected by pointers.

In practice, a dynamic data structure like this would have its push and pop
operations implemented as member functions of a class (see chapter 7). But to
show the basic technique, this will do:

struct Node {

int data;

Node* next;
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};

Node* stack; // global stack root

void main()

{

Node* temp;

// initialise stack as empty

stack = 0;

...

// push item on stack

temp = new Node;

temp->data = 1;

temp->next = stack;

stack = temp;

...

// pop item of stack

int data;

if ( stack == 0 )

cout << "stack empty" << endl;

else {

data = stack->data;

temp = stack;

stack = stack->next;

delete temp;

}

cout << data << endl;

}

Here, the variable stack points to the top of a linked list of Node structures.
To push an integer value onto the stack, a Node is created using new. The value
is stored in this, which is then inserted at the front of the linked list. The
example shows the first item being pushed onto the stack. Later items can used
exactly the same algorithm. The pop operation is the reverse. It removes a
Node from the linked list, leaving the root pointer stack pointing at the front
of a list of the remaining instances of Node.

C++ has some very sophisticated ways of modifying the standard way of
managing memory. In particular the behaviour of new and delete can be mod-
ified. This and other features of these operators are discussed in §9.2.6.

5.8.1 Dynamic arrays

Arrays can be dynamically allocated and deallocated using new and delete[]

operators. One dimensional arrays are created like this:

Dog* dogset = new Dog[5]; // an array of 5 Dog structures

int* count = new int[size]; // an array of size integers

The new operator returns the location of the array. For a one dimensional
array this is a pointer to the first element of the array. Hence the int* type for
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count. The number of elements in the array must be given, but the value can be
supplied as a variable. So it is possible to decided on the size of a dynamic arrays
at run-time. An array cannot be explicitly initialised when it is created with
new. But if the element type is a structure or a class, and a default constructor
(see §7.2) is defined, it will be invoked for each element of the array.

Dynamically allocated arrays are accessed just like normal arrays using sub-
script notation:

int* vector = new int[3];

vector[1] = 4;

There is nothing special about this. As explained earlier in §5.2.1, any pointer to
an array can be used as though it were an ordinary array name. There are some
differences. Unlike static arrays, a dynamic array name can be used with an
assignment operator. However, only the pointer is copied not the dynamically
allocated array. This is called a shallow copy.

Multidimensional arrays can cause problems, but a typedef can help. A
statically defined array can be declared like this:

typedef int Vector[3];

Vector matrix1[5]; // same as int matrix[5][3]

Dynamically allocating a similar array needs a pointer, and this is declared
using the typedef name:

Vector* matrix2 = new Vector[5];

Vector* matrix3 = new int[5][3];

Both of these are equivalent, but the first is preferred. The first dimension
can be a variable, but the size used in the typedef must be a constant. We are
in effect allocating a one dimensional array of Vector arrays:

typedef int Vector[3];

Vector* matrix4 = new Vector[size];

Dynamically allocated multidimensional arrays can have only one variable
dimension, all other dimensions must be fixed at compile-time. However, this
restriction can be avoided by simulating a multidimensional array with a dynam-
ically allocated one dimensional array and a mapping function. The function
supports multidimensional behaviour by converting a list of subscripts into an
offset for an element in the one dimensional array. This method is demonstrated
in the solution to Exercise 8.4 given in Appendix A.

Accessing a dynamically allocated multidimensional array is the same as for
its static equivalent:

matrix4[2][3] = 24;

To destroy an dynamically allocated array, use the delete[] operator with
the pointer like this:

delete[] matrix4;
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As with other dynamically allocated objects, never use a pointer value after
it has been used with a delete operator. Do not use delete[] on non-array
objects, and do not use delete without [] on arrays. The delete operators
can only be applied to pointer values created with new, or to a pointer with a
zero value. Applying delete[] to a zero pointer has no effect. The delete[]

operator cannot be used with a pointer to a constant object. If the element
type of the array is a structure or class, and a destructor (see §7.3) is defined, it
will be invoked for each element of the array before the memory is deallocated.

5.9 Exercises

1. Write a program that inputs five floating point numbers and stores them
in an array. After they are all input, the program should print them out.
Then calculate and print the average of the values stored in that array.

2. Write a program that inputs a word and checks if it is a palindrome.
A palindrome is a word, the letters of which when taken in the reverse
direction read the same. Use C strings. The <string.h> functions strlen
and strcmp might be useful.

3. Consider the stack example given in §5.8. Write short algorithms in C++

to:

(a) Printout all of the data items stored in the stack.

(b) Destroy the whole stack.

4. A linked list is used to store names and account numbers. A node in this
list is an instance of the structure:

struct Node {

string name;

int account;

Node* next;

}

The address of the first node in the list is stored in a pointer called
accountlist.

Write an algorithm in C++ that creates an independent copy of this list.
The new list should be in the same order as the original, and the location
of its first node should be stored in a pointer called duplicate.

5. A dynamically created array called height contains 10 floating point num-
bers. Unfortunately it is two small. Write an algorithm in C++ that will
double the array’s size without loosing any of the stored numbers.
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Chapter 6

Functions

A function is an executable sub-unit of a program. It has a name, it can be
given arguments to operate on and it can return a value. A function typically
takes data from one or more input arguments, and passes back data by way of
either output arguments or as the return value of the function. For example,
we can define this function:

double max( double a, double b )

{

if ( a > b )

return a;

else

return b;

}

This has the name max, it has two parameters, a and b, and it returns a
value of type double, which is the larger of a or b. It might be used in an
expression such as:

total = 6.3 + max(10.3,invalue) * 0.25

When this expression is evaluated the function max is called with arguments
10.3 and invalue. These values are passed to the function as its parameters.
When the function’s execution is complete, its returned value is used in the rest
of the expression.

Functions are a very powerful design aid. A program can normally be sep-
arated into a number of parts, each represented by a function. A function’s
behaviour can be specified in terms of its parameters and return type. It can
then be written and tested in isolation from the rest of the program. Func-
tions can often be reused in different parts of the program. Groups of related
functions can be written as a program component stored in a file separate from
the main program. General purpose functions can be written to be used in a
number of programs. Indeed, there are a number of standard libraries, such as
<string.h> and <math.h>, that provide lots of useful functions.

The main part of a C++ program takes the form of a function. It can even
have parameters and a return value as explained in §6.8.

A function must be declared before it is called. This can be done by providing
a full function definition, or by just giving a declaration. A function declaration,
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or prototype, is the part of the function that specifies how it can be called. So
for the max function defined above, a declaration is:

double max( double, double );|

As this shows, names do not have to given for parameters in a declaration.
A definition matching this declaration must be supplied somewhere else in the
program. A function can be declared, but not defined, inside another function.

The primary part part of a C++ program takes the form of a function with
the name main. This can have parameters and a return value as explained in
§6.8. However, it cannot be used like a normal function. It is automatically
invoked just once when the program is executed, and it cannot be explicitly
called like other functions.

The structure of a program with functions can take a number of forms. Some
programmers put the declarations for all the functions in a program before main,
and the matching definitions after main. Others make the declarations local by
putting them in the functions where they are used. As before, they still put the
declarations at the end of the program after main.

Both of these approaches are okay, but a simpler and perfectly satisfactory
way is to put all function definitions before main, and not to use declarations
unless absolutely necessary. If one function calls another, the called function
must be defined before the calling function. Very rarely two functions will call
each other, in which case a function declaration will have to be used as a forward
reference. This is the approach used in this book. Larger programs are normally
split into separate files, and function declarations are very useful in this context
(see §8.9).

6.1 Scope and duration

Variables are commonly declared inside a function. These variables can only
be used inside the function after their declaration. They are said to have local
scope within the function. In general, locally declared variables are destroyed
when a function ends. Their duration is the same as their scope. Parameter
names have local scope.

Variables declared outside a function have global scope, and these can be
used in any function defined after their declaration. The duration of a global
variable is the lifetime of the program. If a local variable has the same name as
a global variable, the local variable is accessed when the name is used. However,
the global variable can be specified by putting :: in front of the name.

These scope rules also apply to named constants, enumeration and typedef
names. For example, in the following function the local SCALEFACT hides the
global constant of the same name:

const float SCALEFACT = 3.6;

const float PI = 3.142;

float transform( float before )

{

const float SCALEFACT = 1.5;

float prescale;
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prescale = 2 * before * PI ;

return prescale * SCALEFACT; // local constant used

}

A local variable declared as static is initialised once in the lifetime of the
program, and it is not destroyed at the end of the function. This feature has
limited use, but it can be used to count the number of times a function is called.
For example, this function counts up from eight:

int demo()|\\

{|\\

static count = 8;|\\

return count++;|\\

}|

6.2 Parameters

A function parameter can be declared for input and output, or for input only.
A parameter has a type, which specifies what sort of object can be used as an
argument for that parameter when the function is called. An input-output pa-
rameter is distinguished from an input-only parameter by being suffixed with an
&. This makes them reference types, which are described in §5.7. For example,
the following trivial function triples the value of its first parameter, returning
the output value through it second parameter. It does not return a function
value, so its function type is void:

void triple( int in, int& out )

{

in *= 3;

out = in;

}

Here, both parameters are modified inside the function, but the effects are differ-
ent. An input-only parameter can be modified, but the argument in the calling
function will not change because a copy of the argument is passed to the called
function. However, when an input-output parameter is modified the argument
in the calling function is changed. We say that input-only arguments are passed
by value and that that input-output arguments are passed by reference.

The type of the arguments used when the function is called must match
the parameters in the function definition. Constants can be used as input only
arguments. So triple can be called like this:

int input = 4;

int output1, output2;

triple(input,output1);

triple(42,output2);

triple(input,6); // error - 2nd argument constant

triple("hello",output2); // error - 1st argument not int

A function can be defined with no parameters by giving it an empty param-
eter list. But parentheses must still be used when it is called:
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void print_copyright()

{

cout << "(c) A.P.Robson 1996";

}

print_copyright();

6.2.1 Structures

A structure (or class) can be used as a parameter in the same way as a funda-
mental type:

struct Stockitem {

int id;

int quantity;

};

void merge( Stockitem s1, Stockitem& s2 )

{

s2.quantity = s2.quantity + s1.quantity;

}

It is often more efficient to pass a large structure by reference rather than
by value, even if is only being used for input, because it will not be copied.
However, such a parameter should be declared as constant:

void print( const Stockitem& sitem )

{ // sitem cannot be modified

cout << sitem.id << ":" << sitem.quantity << endl;

}

6.2.2 Pointers

A pointer can be specified as a parameter in a number of ways. For example,

void funct1( Node* list )

void funct2( const Node* list )

void funct3( Node*& list )

Here, funct1 can modify the Node object pointed to by the parameter, but
it cannot change the pointer argument. The function funct2 cannot modify the
object or the pointer. If the pointer is going to be modified, use a reference as
shown with funct3, which also allows modification of the object pointed to by
the parameter.

A pointer parameter is treated in the same way as any pointer object. In
particular, its argument must be the name of a pointer of the same type, or the
address of a suitable object.

6.2.3 Arrays

Arrays can be used as function parameters, but they behave in a different way
to other types of parameter. For example,
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void copy_cstring( const char sin[], char sout[] )

{

int i = 0;

while ( sin[i] != 0 ) {

sout[i] = sin[i];

i++;

}

sout[i] = 0;

}

Here, the first parameter sin is input only because it is defined with const.
But the second parameter sout is input-output, so it can be modified. Array
parameters are modifiable by default. This is different to non-array parameters,
where an input-output parameter has to be identified with an &. The above
function can be called with array names or a literal as arguments:

char string1[20] = "abcde";

char string2[20];

copy_cstring(string1,string2);

copy_cstring("fgh",string1);

copy_cstring(string1,"fgh"); // error

A multidimensional array can be declared as a parameter but it must have
all but its first dimension’s size specified:

const int COLS = 5;

void print( int matrix[][COLS], int row )

{

for ( int i = 0; i < row; i++ ) {

for ( int j = 0; j < COLS; j++ )

cout << matrix[i][j] << ' ';
cout << endl;

}

}

Here, the second dimension of matrix is fixed, but the number of rows is
given at run-time. So this function will accept any two dimensional array of
int with five columns. All the dimension sizes can be specified in a parameter
declaration, but the first will still be ignored for type checking. The above print
function can be used like this:

int matrix1[3][5];

int matrix2[3][6];

print(matrix1,3); // okay - matrix has 3 rows ad 5 columns

print(matrix1,4); // okay but incorrect - matrix has 3 rows

print(matrix2,3); // compile error - matrix has 6 columns

An one dimensional array can be automatically converted into a pointer to its
element type, which contains the location of the first element in the array. So it
is possible to declared array parameters as pointers. For example, the following
is the equivalent of copy_cstring using pointers instead of subscripts:
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void copy_string( const char* sin, char* sout )

{

while ( *sout++ = *sin++ );

}

This style of manipulating arrays is more compact, but it is not as easy
understand as the subscript version. So in general, using pointers to access
arrays like this is not recommended.

6.2.4 Default arguments

Default argument values can be specified for functions. However, they must
be at the end of the parameter list, and they cannot be used with reference
parameters. For example,

double percent( double val, double pcent = 1.0 )

{

return val / 100 * pcent;

}

This function can be called with:

amount = percent(50); // amount is 0.5

amount = percent(50,50); // amount is 25

6.3 Return values

A function is normally declared with a return type in front of its name. If
a function does not return a value, it should be given a return type of void.
Functions that do not return a value are sometimes referred to as procedures.
If a function is not given a type, it is assumed to return int.

If a function is not declared as void, it must end its execution with a return

statement containing an expression of the correct type. There can be more than
one return statement in a function, and the function will terminate when one
of these is executed:

int max( int a, int b )

{

if ( a > b )

return a;

else

return b;

}

The function max returns the value of its largest parameter. It can be used
wherever an int constant is valid:

int biggest = max(umber1,umber2);

space = 26 * max(9,length);

cout << "biggest is " << max(length,width) << endl;
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A void function is normally terminated by allowing it to execute the last
statement in its body. However, it can also be terminated by a return statement
with no expression. The following example, which calculates the average of an
array of numbers, shows how return can be used without a value:

void mean( const float data[], it count,

float& result, bool& okay )

{

if (cout < 1 ) {

okay = false;

return;

}

float sum = 0.0;

for ( int i = 0; i < count; i++ )

sum += data[i];

result = sum / count;

okay = true;

}

The return value of a function does not have to be used. So we can write:

max(val1,val2);

This is syntactically correct, but it does nothing because the return value is
discarded, and its arguments are not modified.

A function can return a reference, which allows it to be used on the left-
hand side of an assignment operator. A function must not return a reference to
a local variable or an input only parameter, because these objects will not be
available after the function has finished, making the reference invalid. However,
an output parameter can be returned as a reference, so the following is okay:

int& min( int& a, int& b)

{

if (a < b)

return a;

else

return b;

}

This function can be used on the left or right hand side of an assignment:

small = min(number1,number2);

min(number1,number2) += 4;

In the first case, the value of smaller of the two variables given as arguments
will be assigned to small. In the second, 4 will be added to the smallest of the
variables given as arguments. Sometimes a function returns a reference just for
reasons of efficiency. To prevent such a function from being used on the left-
hand side of an assignment, its return reference type should be prefixed with
const.

A function can return a pointer to an variable. however, pointers to local
variables or parameters should not be returned because, like references, the
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items pointed to will not be available after the function finishes. A function
returning a pointer can be used, like an ordinary pointer, with the * and ->

operators. In the following example, the function mostof takes two pointers to
Stockitem objects, and returns a pointer to the Stockitem with the greatest
quantity member. This function is used, with the -> operator, to change the
id member of the greatest of two Stockitem. By applying the * operator to
dereferenced the returned pointer, a copy of the greatest of the two objects can
be made:

struct Stockitem {

int id;

int quantity;

};

Stockitem* mostof( Stockitem* a, Stockitem* b )

{

if ( a->quantity > b->quantity )

return a;

else

return b;

}

void main()

{

Stockitem item1 = {111,64};

Stockitem item2 = {222,55};

Stockitem topcopy;

int top;

mostof(&s1,&s2)->id = 333;

// assign 333 to id field of max argument

topcopy = *mostof(&s1,&s2);

// assign pointer (to max argument) to topcopy

}

Notice that the parameters of mostof are not declared as const. This is
because they can be modified via the returned pointer value. To prevent a
function that returns a pointer being used to modify the object pointed at, the
returned pointer must be declared as const.

Returning an array from a function is a syntactic problem. We are forced
to use pointer notation. For example, a function that returns a C string must
be declared like this:

char* concat( const char s1[], const char s2[], char out[] );

This function takes two C strings s1 and s2, that are not modified, and
returns another string which is their concatenation. The returned string cannot
be declared inside the function because local variables are destroyed when a
function finishes. Instead, the concatenated string is built in the input-output
parameter out, which can hold the result in a permanent form. The returned
string in the above example can be modified. If this is not required, it should
be declared as const char*.



6.4. RECURSION 61

As it is declared in the above example, the returned string can be modified.
If this is not required, it can be declared as const char*,

6.4 Recursion

C++ functions can call themselves. This is called recursion. It can be a very
elegant way of expressing an algorithm. For example, the factorial of an integer
is given by the formula n! = 1×2× ...×n, and the following function calculates
this value:

int factorial( int n )

{

if ( n <= 0 )

return 1;|

else|

return n * factorial(n - 1);|

}

Here, the function repeatedly calls itself with reducing values of n to perform
the calculation. The recursion stops when the function is called with n equal to
zero.

Recursion has a performance overhead. It takes time to call and return from
a function, and each function call uses computer memory until it returns. So a
recursion with many function calls can require more than the available memory,
and will not be able to complete.

Used well, recursion allows algorithms to be described concisely, but only
use it with problems that can be naturally expressed in this way. Be careful
about indirect recursion, where two or more functions form a recursive loop.
Such designs can be difficult to understand and maintain.

6.5 Inline functions

Calling a function has an overhead. It takes a short time to transfer control to
and from the function. As a program runs the accumulation of this time can
be considerable, and it sometimes makes a program too slow to be useful. To
help with this, C++ can be instructed not to generate a proper function call
by declaring the function to be inline. If this is done, the compiler will try to
place a copy of the function’s code in the program at the point where the call
is made. A function is declared inline like this:

inline double max ( double a, double b)

{

...

}

The most benefit is obtained by declaring inline only small functions that
are called many times. There is a potential overhead to inline functions. The
size of the executable file might increases, so more memory is needed.

An inline declaration is a just a request. The compiler may not be willing
to honour this if the function is very complicated. If inlining is being used,
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check the compiler’s options. The default on some compilers is not to inline any
functions. Recursive functions cannot be declared inline.

6.6 Functional polymorphism

Sometimes two functions operating on different data perform essentially the
same operation. For example, these functions with different names both print
details of their parameter to the output stream:

void printstock( Stockitem s )

{

cout << ...

}

void printcost( Chargeitem c )

{

cout << ...

}

It is convenient if the same name, which captures the essential operation,
can be used for both functions. The concept of an operation that can be applied
to different types of data to obtain equivalent results is called polymorphism.
Functional polymorphism is achieved in C++ using function overloading. Func-
tions are given the same name, and the compiler uses their parameters to choose
the correct one for the call. The compiler creates a unique signature for each
function from its name, and the type, number and order of its parameters.
A function’s return type does not contribute to its signature. The compiler
matches signatures to choose the right function to call. So the print functions
given above could be defined with the same names:

void print( Stockitem s )

{

// same as printstock

}

void print( Chargeitem c )

{

// same as printcost

}

The detailed rules for matching are very complex but the following simplified
rules will do in most cases. They are applied in the given order:

1. Exact match - the type of the argument exactly matches one of the alter-
natives

2. Standard conversions - the standard conversions are applied to achieve a
match.

3. User defined conversions - user defined conversions (which are class con-
structors taking one argument) are applied to achieve a match.
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When there is more than one argument, an intersection rule is applied. A
set of “best” matching functions for each argument is found and the intersection
of these sets is considered. A no-match error is reported if the intersection is
empty. If the intersection contains more than one function, there is an ambiguity
error.

6.7 Pointers to functions

A pointer to a function can be defined like this:

int (*p2f)(int);

This is a pointer, called p2f, to any function that has one int parameter and
returns an int value. So the following is possible:

int funct1( int a ) {...}

int funct2( int a ) {...}

void main()

{

int result;

int (*p2f)(int);

p2f = funct1;

result = p2f(111); // call funct1

p2f = funct2;

result = (*p2f)(222); // call funct2

}

There are two call notations allowed, as shown in the above example. The
pointer name can be used as the function name or an * can be used to make it
clear that a pointer is being employed. A typedef can be used with a function
pointer like this:

typedef int (*Function)(int);

...

Function afunctn = funct1;

...

afunctn(555);

6.8 The function main

Normally, all C++ programs have a function called main, which is automatically
invoked every time a program is executed. It can have parameters and produce
a return value, but it is often declared as void with no parameters. Its special
role means that it cannot be explicitly called like other functions.

6.8.1 Leaving main and program termination

A C++ program ends when its main function terminates. If main is declared as
void, it is normally terminated by allowing it to execute the last statement in
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its body. However, like any other void function, it can also be terminated by a
return statement with no expression.

A program can return a value to its execution environment by defining main

with an int return value, and using a return statement with an expression to
end the program:

int main()

{

...

if ( error )

return 9;

...

return 0;

}

Using exit(status) is another way to immediately terminate a program,
where status is an integer input argument. It does not return to its caller,
and the value of the status argument is passed to the the program’s execution
environment. This function can be called from main or any other function. The
return type of main should be void if this method of ending a program is used.
The status argument is typically zero if the program is terminated successfully,
and non-zero otherwise. It can be set with EXIT_FAILURE to indicate abnormal
termination, or EXIT_SUCCESS for a normal program termination.

A more drastic way to stop a program is to use abort(). This function
immediately terminates a program with little or none of the tidying up that
is performed by the other methods. Some systems will print a special error
message when abort is used. The use of abort should be reserved for serious
errors. The library <stdlib.h> must be included if exit or abort are used.

6.8.2 Command line arguments

Arguments can be given with the command that executes a program. For ex-
ample, a program called detab, that removes tab characters from a file, might
be executed with the command:

detab file1.dat file2.dat 3

A program gets its command line data by declaring main with two parame-
ters:

void main( int argc, char* argv[] )

The first parameter gives the number of arguments. The second is an array of
C strings, each of which is one of the command line arguments. The first string
in the array is always the program name. For the command given above the
value of argc is 4 and the elements of argv are:

argv[0] "detab"

argv[1] "file1.dat"

argv[2] "file2.dat"

argv[3] ”3"

The following program shows how command line parameters can be pro-
cessed:
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#include <iostream.h>

#include <string>

#include <stdlib.h> // for atoi and exit

const DEFSPACE = 3;

void main( int argc, char* argv[] )

{

string in; // input file name

string out; // output file name

int spaces; // number of spaces

bool error = false;

if ( argc < 3 )

error = true;

else {

in = argv[1];

out = argv[2];

if ( argc == 3 )

spaces = DEFSPACE;

else

if ( argc == 4 )

spaces = atoi(argv[3]); // convert C string to int

else

error = true;

}

if ( error ) {

cout << "Format is:" << endl

<< "DETAB <in file> <out file> [<spaces>]"

<< endl;

exit(99);

}

... rest of program

}

6.9 An example

This small program manages a list of pet dog names. The list is implemented
as an array of strings. There are three functions for managing this array:
print_dogs, add_dog and is_a_dog. The array dogs and its size MAX_DOGS

are defined in main and passed to the functions as arguments. In this way,
there could be more than one array in the program. These arrays can contain
blank entries, and the functions take account of this. The main program just
demonstrates how the functions and array might be used.

#include <iostream.h>

#include <string>

int print_dogs( const string dogs[], int max )
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// Print the names of all dogs

// return the number of dogs

{

int dcount = 0;

for ( int i = 0; i < max; i++ )

if ( dogs[i].length() != 0 ) {

cout << dogs[i] << ' ';
dcount++;

}

return dcount;

}

bool add_dog( string dogs[], int max, string adog )

// Add a dog

// return false if no room, true if okay

{

int i = 0;

while ( dogs[i].length() != 0 && i < max )

i++;

if ( i < max ) {

dogs[i] = adog;

return true;

}

else

return false;

}

int is_a_dog( const string dogs[], int max, string dog )

// Check if a dog exists

{

if ( dog == "" )

return false;

else {

int i = 0;

while ( dog != dogs[i] && i < max )

i++;

return ( i < max );

}

}

void main()

{

const int MAX_DOGS = 4;

string dogs[MAX_DOGS] = {"Cleo","Penny","Brollie"};

cout << "The dogs are ";

int dog_count = print_dogs(dogs,MAX_DOGS);

cout << endl << " and there are "

<< dog_count << " of them." << endl;
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if ( add_dog(dogs,MAX_DOGS,"Moss") ) {

print_dogs(dogs,MAX_DOGS);

cout << endl;

}

else

cout << "do not expect this!!!!!" << endl;

if ( add_dog(dogs,MAX_DOGS,"Fido") ) {

cout << "do not expect this!!!!!" << endl;

}

else

cout << "no room for dog" << endl;

if ( is_a_dog(dogs,MAX_DOGS,"Cleo") )

cout << "Cleo is a dog" << endl;

else

cout << "Cleo is not a dog !!!" << endl;

if ( is_a_dog(dogs,MAX_DOGS,"Tigger") )

cout << "Tigger is a dog !!!" << endl;

else

cout << "Tigger is not a dog" << endl;

}

6.10 Exercises

1. Write a function that takes an array of float numbers and returns the
smallest and largest numbers in that array.

2. Write a delete function for the example in §6.9. The function should take
the name of a dog as an argument and, if it is present, remove it from the
array of names. To remove a name replace it with an empty string.

3. Write a function that splits a file name with the format name.type into
two string containing just name and type. The string operations substr

and find_first_of, which are described in appendix B, might be useful.

4. Write a function that uses recursion to calculate the sum of the first n
positive integers.

5. Write a program called addthem that takes two numbers from the com-
mand line and prints their sum. The function atof, in <stdlib.h>, will
be needed to convert C strings to floating point numbers.
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Chapter 7

Classes

7.1 Classes and objects

Consider a set of functions that operate on common data. They can be written
so that all operations on the data are done by calling these functions. In this
way, the functions define how the data can be legitimately used. This is a
useful approach to program design because it partitions a program into self
contained components that can be developed independently. Unfortunately,
with this informal approach, data can be accessed without using the associated
functions, destroying the neat divisions between components carefully designed
into the program.

In C++ we can associate functions with data, and restrict access to the data,
by using a class. A class describes a group of related functions and data, and
controls how they can be accessed. It has a public and a private part. Anything
declared in the private part of a class can only be accessed by functions also
declared in the class. Normally, functions are put in the public section of the
class and the data is put into the the private section. So there can be no
improper use of the data. This idea is called encapsulation or data hiding. It is
a very powerful programming concept.

Let us suppose that we are writing a program that manipulates information
about items stored in warehouse. We need to work with an item’s code, unit
cost and stock level. A class that represents this might be:

class Stock {

public:

void init( int acode, double acost, int alevel );

int code() const;

double cost() const;

double total_value() const;

int level() const;

void cost( double acost );

void remove( int number );

void add( int number );

private:

int thecode;

int thecost;

69
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int thelevel;

};

This class is called Stock. It is composed of function and data declarations,
which are referred to as the members of the class. It has private and public
parts. The public section follows public:, and the private section is between
private: and the end of the class. The members in the private section of a
class can only be accessed by functions also declared as members of that class.
(They can also be accessed by friends of the class, but we will ignore this until
chapter 9.) There is no such restriction on the public members of a class. There
can be any number of private or public sections in a class, and they can be in
any order. Anything at the start of the class before a named section is private,
but this style is not recommended. It is best to put the public section first
because this is of most interest to users of the class. Data and functions can
be declared in either the public or the private sections of a class, but data is
normally declared as private, to take advantage of encapsulation.

The data members of Stock are three integers: thecode, thecost and
thelevel. All of these are declared in the private part of Stock, so they can only
be accessed by member functions of the class. The functions that control how
the Stock class can be used are declared in its public section. These functions
are declared as prototypes, which give the function’s name and its arguments.
The argument names do not have to be given, but it helps documentation if
they are. A class has its own name space. The names of members declared in
one class will not clash with those in another class. Member function defini-
tions, showing how they are implemented, are given later in the program or in
a separate file. They can also be defined within the class declaration. How to
do this is explained later.

A class name is used as a type to define an instance of the class like this:

Stock widget;

Stock spikenard;

The variables widget and spikenard are class objects. These have the same
behaviour but their state, which is stored in their data members, can be differ-
ent. After a class object is declared, it it used with a dot operator in the same
way as a structure:

widget.init(999,2.6,100);

widget.remove(10);

if ( widget.level() < 5 )

cout << "Order some more widgets with the code "

<< widget.code() << endl;

The private parts of the class are not directly available when an instance of
the class is used. So the following will cause compilation errors:

widget.thecost = 10; // error

current_level = widget.thelevel; // error

The Stock class has been designed so that these operations are not allowed.
Only those operations possible with the specified public member functions can
be performed on a Stock object. Anything else will be reported as an error.
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The functions in the public part of a class define its external behaviour. To
see how this is works we will look at the declaration of Stock in more detail. The
member function init is used to give a Stock object an initial value. A better
way of initialising objects with constructors is described later in this chapter.
Some member functions will not change Stock objects, so they are declared as
constant functions with the suffix const. For example, the functions level and
total_value return information stored in a Stock object without changing its
value. The other functions, such as remove and add, will modify the state of an
Stock object by changing stored information. It is important to recognise that,
as users of the Stock class, we do not care how this information is stored, only
that we can obtain it when needed, and that it represents the possible valid
states of a Stock object.

The function cost(double acost), which updates unit cost, is interesting.
It has the same name as cost(), which returns the value of unit cost. The
compiler can tell the difference between these functions. This is an example of
function overloading, which is explained in §6.6. Accessing the data attributes of
a class object with pairs of functions like this is a useful technique. In contrast,
you will notice that there are no functions for changing the value of thecode
after initialisation (apart from init). This correctly expresses the intended
behaviour of a Stock object, which is that the code given to a stock item should
not be changed.

There is an additional rule for the way a Stock object should behave that is
not given by the class definition: the stock level cannot be less than zero. This
would normally be stated in the class as a comment. Indeed, it is good practice
to use comments in a class to describe its behaviour in more detail than can be
deduced from its declaration alone.

The private parts of a class can usually be ignored when its behaviour is
considered. The functions in the public section define how the private parts
are used. Thus it is the the public, rather than the private, section that is
interesting to a user of a class. Being able to see hidden data and functions
in a class is a feature of C++, but this does not mean that we need to take
any notice of it. The private sections of a class are part of its implementation.
They describe data and functions used to implement the public part of the
class. It is a good idea to separate the ideas of definition and implementation.
Implementation information is not needed to use a class. So unless we are
designing and building a class we can ignore it.

A class is implemented by providing definitions for all of its functions. This
can be done in the same file as the class declaration or in a separate file. The
same function name can be used in different classes, so a scope operator :: is
used to associate a function’s definition with its class, like this:

void Stock::remove( int number )

{

thelevel -= number;

if ( thelevel < 0 )

thelevel = 0;

}

Notice that this implementation enforces the positive stock level rule for Stock
objects mentioned above. Member functions have full access to the private parts
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of their class. So remove can reference thelevel without restriction. A member
function can be defined in its class declaration like this:

class Stock {

...

double total_cost()

{ return thecost * thelevel; }

...

};

This is an example of an inline member function which are discussed in §8.1.
They can improve the performance of a class implementation by removing the
function call overhead. However, they confuse definition and implementation,
and can make class declarations difficult to read.

A class is a user defined type. It is managed by the compiler in much the
same way as the fundamental types. A class can be thought of as an abstract
data type which represents a concept in the problem domain such as a stock item,
or a computer software idea such as a stack. Class objects can be composed
into arrays, be data members of classes and passed as arguments to functions,
just like instances of the fundamental types such as int.

In general, a class declaration is composed of data members that are normally
private, and member functions that can be public or private. Public member
functions are a class’s interface to the rest of the program, they specify its
behaviour. Private member functions are used to implement the class, and as
such are not part of its interface. Enumerations and typedef statements can be
used in the public or private parts of a class declaration to make its behaviour
and implementation easier to express.

7.2 Constructors

A Stock class object, as described above, will not be automatically initialised.
Its init member function has to be explicitly called to do this. A much better
way of ensuring that objects are initialised with suitable values is to declare con-
structors for the class. These are special functions that are used by the compiler
to initialise class objects. It is good practice to always declare a constructor.
Constructors have the same name as their class, and do not have a return type.
In Stock the init function could be replaced with:

Stock( int acode, double acost, int alevel );

This constructor will be executed when a Stock object is defined like this:

Stock widget(999,2.5,100);

The implementation of this constructor should initialise the private parts of
widget, which might be done as follows:

Stock::Stock( int acode, double acost, int alevel )

{

thecode = acode;

thecost = acost;

thelevel = alevel;

}
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Here, the data members of the class are initialised with assignment operators.
An alternative style is to use an initialiser list as shown in §7.4. A class can
have more than one constructor provided their parameter lists are different. If
a class has no constructors, it cannot be given an initial value. The instances
of a class with constructors must be declared with initial values that match one
of its constructors In particular, if a class has constructors, and we want to
declare an instance without giving any explicit initial values, there must be a
constructor that takes no arguments. For example, we can declare an instance
of a class with:

Stock widget;

This invokes a constructor with the following declaration:

Stock();

This is called the default constructor of the class, and it should supply default
values for the data members of its class. In this case, a suitable implementation
might be:

Stock::Stock()

{

thecode = 999;

thecost = 0.0;

thelevel = 0;

}

The best default values depend on the required behaviour of the class, but
they should always be chosen to initialise an object to a valid state. If suitable
values cannot be identified, do not declare a default constructor. This will force
a user of the class to provide initial state information using another constructor.

Constructors are called automatically when an object is created. They can-
not be used like ordinary member functions, so the following will be reported
as an error:

widget.Stock(); // error

It is okay to have more than one constructor for a class, provided they have
different parameter lists. Function overloading is used to choose the correct
version. However, the number of constructors can be reduced by using default
argument values. For example, the two Stock constructors discussed above
could be replaced by one constructor with default arguments:

Stock( int acode = 999, double acost = 0.0, int alevel = 0 );

The implementation of this constructor is exactly the same as for the version
without any default values. If less than the full set of arguments is given when
an object is created, the default values are used. This constructor can be called
with no arguments, so it can act as the class’s default constructor. All the
following are valid, and will be serviced by this constructor:

Stock widget;

Stock widget3(123), widget4(32,1.5);

Stock widget(41,3.6,9);
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It is not necessary for all of a constructor’s arguments to be given default
values, but any that are must be at the end of the list. Objects can also be
declared as follows if a constructor taking a single argument of the correct type
exists:

Stock widget = 99;

There is such a constructor for Stock, and the above is equivalent to:

Stock widget(99);

Sometimes we want to initialise an object to be the same value as another
object of the same type. To do this we can write:

Stock widget2 = widget1;

This will look for a constructor of the form:

Stock( const Stock& s );

This is called a copy constructor. It is responsible for copying all of its
parameter’s data members to the object for which it was invoked. Its parameter
must be a reference. Stock(Stock s) is not allowed.

If a copy constructor is not defined, a memberwise copy is performed. This
means that a copy operation is applied to each data member in turn. If the
member is a fundamental type, a simple bitwise copy is used. Pointers are
copied, but what they point to is not. Arrays are copied on an element by
element basis. A copy constructor is only needed when the default memberwise
copy is unsatisfactory. The most common reason for this is the use of pointers
in a class.

The copy constructor should not be confused with the assignment operator.
The assignment operator =, in itself, will not invoke a class’s copy constructor.
So the = symbol does not mean the same thing in the following statements:

Stock widget1 = widget2; // copy constructor

widget1 = widget2; // assignment

The default assignment operator, performs a memberwise copy. So, if a
copy constructor is needed to replace the memberwise copy, it is very likely that
an assignment operator overload will be needed as well. Assignment operator
overloading in explained in §9.2.2. This, together with copy constructors and
destructors, are discussed in §9.4, which describes how to write safe classes.

A copy constructor is invoked at other times, as well as class object declara-
tion. Temporary instances of objects may be created when an object is passed
to a function as an argument. For example, consider a function that combines
information from the Stock objects in1 and in2, and returns the information
as another Stock object:

Stock merge( Stock in1, Stock in2 );

When this function is called, the arguments are passed by value. This means
that temporary copies are made, and copy constructors are called when this hap-
pens. The function returns a value of type Stock, and again a copy constructor
is used to create this object. The function merge is used in the statement:
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widget2 = merge(widget1,Stock(56,3.6));

Here, the function is called and its value assigned to widget2. When merge

is called, a copy of widget1 is created with a copy constructor, and an object
is created with a constructor that matches Stock(int,double). When the
function is finished, its return value is created with a copy constructor, and
the two temporary Stock objects holding the arguments are destroyed. The
object holding the returned value is used by the assignment operator, and is
then destroyed at the end of the statement. A copy constructor is not used
if the parameter is declared as a reference, for input-output, or as a constant
reference, for input only. For example, the following will not invoke a copy
constructor when it is used:

void convert( const Stock& in, Stock& out );

Constructors are used to make temporary instances of a class in order to
assign a fixed value to an object:

widget1 = Stock(56,3.6);

widget2 = Stock(); // using default constructor

widget3 = Stock; // error

widget4 = 9; // implicitly invoke Stock(9)

When these statements are executed, a temporary instance of a Stock object
is created by calling a Stock class constructor. This temporary instance is then
copied to the permanent object by the assignment operator, and then destroyed.
The implicit use of a constructor can be prevented by declaring it as explicit
like this:

class Lock {

public:

Lock();

explicit Lock( int keynumber );

...

};

If this is done, the compiler will only allow the constructor to be used if it
is named:

Lock door1;

door1 = Lock(9); // okay

door1 = 9; // error - constructor cannot be invoked

When an array of class objects is declared a constructor is called for each
element of the array. If an initialiser is given for the array, an appropriate
constructor will be used with each of its values, otherwise the default constructor
will be used:

Stock items[10]; // Stock() used

Stock more[5] = {3,5,6,2,7}; // Stock(int) used

Stock more[2] = { Stock(), Stock(56,3.6) };

// Stock() and Stock(int,double) used
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7.3 Destructors

When an object goes out of scope or is deleted, it is destroyed and cannot be
used again. If the object is a class instance, a special function can be declared
in the class that will be called just before this happens. This function is called
a destructor, and it is declared in the public part of a class like this:

~Stock();

It has the same name as its class, proceeded by a ~ character. It has no
arguments or return type. A class can have only one destructor.

A destructor should be declared if special processing is required when an
object is destroyed. This is often happens when pointers are used to implement
a class. In this case a destructor function is defined that uses delete to clean
up the dynamically allocated data structures referenced by the pointers. If
a destructor is being used, it is very likely that a copy constructor and an
assignment operator overload will be needed as well. These are discussed in the
context of writing safe classes in §9.4. Take care, if a destructor exists for a
class it will be invoked whenever an instance of that class in destroyed. This
applies to more than just the explicitly defined instances of the class. It will
also happen when the object is used as an input argument for a function, as a
return value in a function, or when a constructor is used to provide a constant
value in an expression.

When an array of class objects is destroyed a destructor, if one is declared
for the class, is called for each element of the array. Destroying an instance of
a class or structure will invoke its data member’s destructors.

A destructor can be explicitly called like an ordinary member function, but
it is unusual to do this. An object that has a destructor explicitly applied must
not be used until it is initialised again. Objects with destructors cannot be
members of unions.

Destructors, together with constructors and assignment operator overloads,
are very useful features of C++. They allow sophisticated memory management
of objects, and reliable support for dynamic data structures. However, great care
is required. Destructors and constructors are called automatically. If they are
not designed and implemented correctly, damage can be caused that is difficult
to detect and correct. Particular care is needed if destructors are used in classes
with virtual functions as explained in §11.5.

7.4 Containment

A class can have class objects as data members. This is called containment. It
is an obvious and useful way to use classes. We can implement a class using
other classes as reusable software components. As an example, we could use a
Money object to store the cost in a Stock class. The private part of Stock might
look like this:

class Stock {

...

private:

int thecode;
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Money thecost;

int thelevel;

};

The Money object is used by the member functions of Stock to implement
its behaviour. However, there is a complication. When an instance of Stock
is created a Money object also has to be created, and this has to be initialised.
Simply assigning a value to the Money object in Stock’s constructor is possible,
but a better way is to use a member initialiser list. Assuming that Money has a
suitable constructor, Stock’s constructor can be written like this:

Stock::Stock( int acode, double acost, int alevel )

: thecost(acost)

{

thecode = acode;

thelevel = alevel;

}

The initialiser list follows the : and, in this case, it invokes the constructor
Money(double) for the thecost member of Stock. The fundamental types can
also be treated like this, so the Stock constructor could be defined as follows:

Stock::Stock( int acode, double acost, int alevel )

: thecost(acost), thecode(acode), thelevel(alevel)

{}

Here, all the data members of Stock are dealt with in the initialiser list and
the body of the constructor is empty. An initialiser list is processed before the
body of its constructor. The order of items in the list is irrelevant. Member are
initialised in the order of their declaration in the class.

A memberwise copy may be applied to class objects if a copy constructor
is not declared for their class, If this happens, the copy constructors of any
contained class objects will be invoked to perform the copy operation. If a
contained class object does not have a copy constructor, a memberwise copy
will be used instead.

If a copy constructor does exist for a class, it must explicitly copy all of
its class’s data members, including those which are class objects. Using an
assignment operator to copy class objects will not invoke their copy constructors.
To mimic the behaviour of a memberwise copy an initialiser list must be used,
thus:

Stock::Stock( const Stock& s )

: thecost(s.thecost)

{

thecode = s.thecode;

thelevel = s.thelevel;

}

The constructors for objects are invoked in the order that the objects are
declared in their containing class. All contained objects are initialised before the
containing class’s constructor is called. Destructors are invoked in the reverse
order. First the containing class’s destructor is called. Then the contained
objects’ destructors are applied in the opposite order to their declaration in the
containing class.
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7.5 An example

The following is a complete definition of a stock class with a simple example of
how it might be used. The Stock class has only one constructor. This is declared
with default arguments, so it can be invoked in a number of ways, including as a
default constructor. There is no copy constructor or destructor defined, because
these are unnecessary for the chosen implementation. The declarations of the
member functions have comments which briefly describe their behaviours. All
the functions that modify Stock are specified to keep the class data within
a limited range. The member function definitions implement this behaviour.
A private function, normalise(), is used to structure the implementation. It
is called from the other member functions after any update to ensure data is
maintained in the correct range. It is a private function and thus part of the
implementation rather than the behaviour of the class. Another implementation
of Stock might not have such a function.

#include <iostream.h>

class Stock {

public:

Stock( int acode = 999, double acost = 0.0,

int alevel = 0 );

// initial state

// if acost or alevel < 0, they are taken as 0

int code() const;

// give stock code

double cost() const;

// give unit cost

double total_value() const;

// give total value of stock

int level() const;

// give stock level

void cost( double acost );

// set new unit cost

// if acost < 0, set to 0

void remove( int number );

// remove number items from stock

// final level >= zero

void add( int number );

// add number to stock

// final level >= zero

private:

int thecode;

double thecost;

int thelevel;

void normalise();

};
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Stock::Stock( int acode, double acost, int alevel )

:thecode(acode), thecost(acost), thelevel(alevel)

{

normalise();

}

int Stock::code()

{

return thecode;

}

double Stock::cost()

{

return thecost;

}

double Stock::total_value()

{

return thecost * thelevel;

}

int Stock::level()

{

return thelevel;

}

void Stock::cost( double acost )

{

thecost = acost;

normalise();

}

void Stock::remove( int number )

{

thelevel -= number;

normalise();

}

void Stock::add( int number )

{

thelevel += number;

normalise();

}

void Stock::normalise()

{

if ( thecost < 0.0 )

thecost = 0.0;

if ( thelevel < 0.0 )

thelevel = 0.0;

}
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void main()

{

Stock wigs(1,20);

Stock springs(2,54.5);

int newstock;

cout << "How many wigs have been delivered? ";

cin >> newstock;

wigs.add(newstock);

cout << "How many springs have been delivered? ";

cin >> newstock;

springs.add(newstock);

cout << "Current stock is" << endl;

cout << "wigs " << wigs.level() << endl;

cout << "springs " << springs.level() << endl;

}

7.6 Exercises

1. The example in §6.9 manages a list of pet dog names using a set of func-
tions and a shared array of names. Write a class called Dogs to do the
same thing. Provide member functions to add and remove dog’s names,
check if there is room for another dog, check if a dog is already stored,
return the number of dogs stored, and print the dog’s names. An instance
of Dogs should be able to hold up to fifteen names.

2. A stack is a first in last out data store.

(a) Specify an integer stack by declaring a class called StackInt. The
class must have member functions push and pop, for storing and
retrieving data items. But some other functions will also be needed.
For example, a way to check if the stack is empty, might be useful.

(b) Show how StackInt can be used by writing a short example that
inserts and removes an item from a StackInt object.

Not that an implementation of StackInt is not required (see the next
question for this).

3. Implement the StackInt class declared in exercise 7.2 using an fixed length
array of integers.

4. Declare and implement a class that simulates the operation of a traffic
control beacon. It has two coloured lights: red and green. Which go
through the following sequence: red, green, red and green, and then back
to red. A green light on its own indicates that a vehicle can proceed. A
vehicle must stop for all other colour combinations.

Call the class TLight. It should have functions that step it through its
light sequence, allow the state of each light to be checked, and display its
current state. Initially a TLight object should have only its red light on.

5. The following is a class that manages a pair of traffic beacons controlling
a single track road:
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class TLpair {

public:

TLpair();

void next();

void display();

private:

// ...

};

The beacons go through the sequence given in the following table:

Step Beacon 1 Beacon 2

1 green red
2 red and green red
3 red green
5 go to step 1 go to step 1

Implement this class using the TLight class from exercise 7.4.

6. Explore the way that constructors and destructors are called by writing
a simple program. Invent a class that has a some constructors and a
destructors that print out messages. Use this class in different situations,
trying to predict the outcome.



82 CHAPTER 7. CLASSES



Chapter 8

More About Classes

8.1 Inlining

The compiler can be asked to use inline expansion rather than a conventional
call for the execution of member functions. If this is done, the compiler will try
to place a copy of the member function’s code at the point in the program where
the object is being used with that function. The use of inlining with member
functions can have a significant effect on a program’s speed because member
functions are often used very frequently and they tend to be small. Inlining can
be requested in a class declaration by providing a body for the function:

class Stock {

public:

...

double total_value()

// give total value of stock

{ return thecost * thelevel; }

...

};

A disadvantage of this style of inlining is that it clutters up the class declara-
tion, and can make it difficult to read. More importantly, it has the undesirable
effect of confusing specification and implementation. As an alternative, the
inline keyword can be used with the function’s definition:

inline double Stock::total_value()

{

return thecost * thelevel;

}

The object oriented style of programming tends to use lots of function calls.
Inlining can reduce the performance overhead caused by this approach, at the
cost of possibly increasing the physical size of a program’s executable image.
The most benefit is obtained by only declaring inline small functions that are
called many times. Inlining should always be considered for constructors and
destructors because these can be implicitly called a lot of times.

83
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A compiler may ignore an inline request if the function is too long or too
complicated. Some compilers must have a special option selected before they
will enforce inline requests.

8.2 Constant objects and member functions

A class can be used to define a constant in a similar way to a fundamental type:

const Stock rightwidget(123,100.0);

A constant object must be initialised, and assignment to the object is not
allowed. The ordinary member functions of a constant object are assumed to
modify the object, and cannot be used. However, the keyword const can be
used to tell the compiler that a particular function will not change any data
members, allowing it to be used with a constant object. This is done as follows:

class Stock {

public:

Stock( int acode = 999, double acost = 0.0,

int alevel = 0 );

int code() const;

// give stock code

double cost() const;

// give unit cost

double total_value() const;

// give total value of stock

int level() const;

// give stock level

void cost( double acost );

// set new unit cost

void remove( int number );

// remove number items from stock

void add( int number );

// add number to stock

private:

...

};

Here, all the data member functions that will not change an instance of
Stock are suffixed with const. The definition of a constant function must also
use the const keyword, thus:

double Stock::cost() const

{

return thecost;

}

Constant member functions can be used with non-constant objects, but non-
constant member functions cannot be invoked for a constant object:

Stock bluehat = 561;
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const Stock STANDARD = 100;

cout << "Blue hat code is " << bluehat.code() << endl;

cout << "Standard code is " << STANDARD() << endl;

bluehat.add(10);

STANDARD.add(10); // error - not allowed with const object

Constant member functions affect the way class objects can be used as func-
tion parameters. If a parameter is declared as input only by making it a constant
reference, then it can only be used to invoke constant member functions This
restriction does not apply to input only parameters passed by name, because
in this case member functions operate on a copy of the argument that is not a
constant.

A constant member function is not normally allowed to modify its class’s
member data. Nevertheless, it is sometimes necessary for a constant function to
change member data. For example, a class might maintain statistical data which
includes the number of times a constant function is used, or an implementation
might periodically restructure the physical layout of private data without chang-
ing its logical constness. The constant restriction can be explicitly removed from
selected member data by declaring it as mutable like this:

class Staff {

public:

...

string name() const

{ access_count++; // allowed because it is mutable

return thename; }

int accesses() const

{ return access_count; }

private:

string thename;

mutable int access_count;

...

};

Take care, mutable is a recent addition to the C++ language, and some com-
pilers do not support it. In this case, constness is just a promise to the compiler,
and a const function can actually modify member data without raising an error.

Member function overloading takes account of constness. If two functions
with the same name and parameter list are declared, but with only one hav-
ing the const attribute, they will be selected on the basis of the constness of
the object for which they are invoked. So it is possible to have different be-
haviour or implementation for constant and non-constant objects. Destructors
and constructors cannot be declared as const functions.

8.3 Compound types and classes

Pointers can, of course, be used with class objects. The member functions of an
object can be accessed by dereferencing the pointer and using a dot operator,
or an -> operator can be used:

Stock stock1;
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Stock* p2stock = &stock1;

*p2stock.cost(3.56);

p2stock->add(45);

The new operator can be used to dynamically create a class object. Spe-
cific constructors can be invoked by giving an initialiser, otherwise the default
constructor will be used on the object:

Stock* stock2 = new Stock(123,34.9);

Stock* stock3 = new Stock;

A dynamic class object must be explicitly destroyed with delete to invoke
its destructor. Any dynamic objects that still exist when a program terminates
will not have their destructors automatically executed.

Arrays of class objects can be declared. Constructors and destructors are
applied to each element of an array of class objects. A initialiser can be used:

Stock item[5] = { 1,Stock(123,34.5),Stock(),2 };

Here, item[0] and item[3] are initialised with Stock(int), item[1] is
initialised with Stock(int,double), and item[2] and item[2] are initialised
with Stock(). An error is reported if any of these constructors is not declared.
If an initialiser is not given for the array, the default constructor is used for all
of its elements. When an array of class objects goes out of scope it is destroyed,
and the class’s destructor, if it is declared, is invoked for each element of the
array.

A dynamically allocated array cannot have an initialiser, but the default
constructor will be used for each class object in the array. Destructors will be
invoked when the array is destroyed by delete[].

8.4 Self referencing

A normal member function has access to a hidden constant called this that
points to the object for which the function was invoked. It has an appropri-
ate pointer type that takes account of the constness of the object. The this

pointer can be used to access any member of the class using the usual pointer
notations. However, it is not normally used explicitly. There is no reason to
write this->thecost in a member function when thecost is all that is needed.
Occasionally the this pointer is invaluable. For example, when the owning
object has to be returned from a member function:

Stock Stock::somefunction()

{

...

return *this;

}

8.5 Static members

A static class member is shared by all the instances of its class. Unlike a normal
class member, it is not part of a particular object. Static members are declared
using the static keyword like this:
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class Demo {

public:

Demo(): moredata(0)

{ objcount++; }

~Demo()

{ objcount--; }

static int count();

{ return objcount; }

...

private:

static int objcount; // class data

int moredata; // instance data

};

int Demo::objcount = 0; // definition and initialisation

Here, count is a static member function and objcount is a static data member.

A separate definition of a static data member has to be provided outside
the class. This is associated with the class by a scope operator. A static data
member can and should be given an initial value. This value will be assigned
to the variable once at the beginning of program execution. Constructors can
modify static data, but they should not be used for static initialisation.

Static data can be manipulated by ordinary or static member functions, but
a static function can only manipulate static data. Static member functions are
used to access static data without reference to a particular object, although
they can also be called like an ordinary member function. Constructor and
destructor functions cannot be declared as static.

The name of a public static member is used outside its class’s member func-
tions by prefixing it with the class name and the scope operator. It can be used
in this way even when there are no instance of the class defined. Alternatively,
it can be used like a normal member name with the name of an object and a
dot or -> operator. Private static members are accessed in exactly the same
way as normal class members.

Static members are used to support class wide activities like counting the
number of objects currently declared, or specialized memory management. For
example, the Demo class given above uses a private static variable to count its
instances. The variable objcount is initialised to zero, which will always happen
before any instances of Demo can be created. The Demo constructor adds one
to objcount and the destructor subtracts one. Since the constructor is always
called when a Demo object is created, and the destructor is called when the object
is destroyed, objcount will hold the number of instances of Demo existing in the
program. To find out how many instances of Demo there are, its count static
member function is called like this:

cout << Demo::count() << endl; // prints 0

Demo a, b;

cout << Demo::count() << endl; // prints 2

cout << a.count() << endl; // prints 2

As this shows, a public static member can be used by qualifying its name with a
scope operator and its class name, even when there are no instance of the class
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defined. It can also be accessed like a normal class member using the name of
an object and a dot operator.

Static member data is very useful for defining non-integer constants within
classes. For example,

class Oven {

public:

static const double MAX;

...

};

const double Oven::MAX = 2000.5;

The public constant Oven::MAX is unique, and cannot clash with constants
named MAX in other classes. It will have the same value in all instances of Oven.
Integer constants can also be declared in a class using an enumerated type (see
§2.6).

Static functions are not related to an instance of their class, but they are
part of its name space. They can be used as public support functions, or private
implementation functions that do not refer to any member data. They look like
non-member functions, so they can be used with software that requires a pointer
to a function, where a normal member function will not be accepted.

The above example showed a static function defined inline. The static

keyword is not used when a static member function is defined separately from
the class declaration, although the static keyword must still appear in the
class declaration. So the equivalent definition would be:

int Demo::count()

// This is a static function

{

return objcount;

}

8.6 Constant and reference data members

Constant non-static or reference data members can be declared in a class. They
have to be given a value by all the class’s constructors using an initialisation
list (see §7.4), and cannot be changed after this. The value of a constant data
member only holds for a particular instance, and not for the class as a whole.
So it is possible for different instances of a class to have different values for
the same constant non-static or reference data member. If a named constant
has the same value for all instances of a class, do not used this method. Use an
enumeration or a constant static data member instead. The assignment operator
will not work with a class object that has a constant non-static or reference data
member, unless the assignment operator is overloaded as explained in §9.2.2.
The following shows how a constant data member might be used:

class Vehicle {

public:

const float MAXSPEED;

Vehicle()

: MAXSPEED(35.8), thelength(0) {}
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Vehicle( double speed )

: MAXSPEED(speed), thelength(0) {}

float length()

{ return thelength; }

void length( float alength )

{ thelength = alength; }

...

private:

float thelength;

...

};

Here, the constant MAXSPEED can have a different value depending on which
constructor is used to create a Vehicle object. It is constant for the object but
not for the class. The class can be used like this:

Vehicle mycar1, mycar2(46.2);

cout << mycar1.MAXSPEED << endl; // prints 35.8

cout << mycar2.MAXSPEED << endl; // prints 46.2

mycar1.length(5.7); // okay - object not constant

mycar1.MAXSPEED = 10; // error - constant data member

mycar2 = mycar1; // error - no default assignment

Vehicle mycar3 = mycar1; // default copy constructor okay

8.7 Pointer to members

A pointer to a member function or data can be declared. This can then be used
to access the member in a particular object of the correct type. The notation
is similar to pointers to non-member functions described in §6.7. Consider the
following trivial class:

class Myclass {

public:

Myclass( int avalue ) : thevalue(avalue) {}

int value()

{ return thevalue; }

void value( int avalue )

{ thevalue = avalue; }

private:

int thevalue;

};

We can declare and use a pointer to a member like this:

typedef int (Myclass::*P2mf1)();

typedef void (Myclass::*P2mf2)(int);|

void main()

{

Myclass x1(1);

Myclass x2(2);
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Myclass* p2x2 = &x2;

P2mf1 pointer1 = &Myclass::value;

P2mf2 pointer2 = &Myclass::value;

// direct access

x1.value(99);

cout << x1.value() << endl;

cout << p2x2->value() << endl;

// access via member pointer

(x1.*pointer2)(99);

cout << (x1.*pointer1)() << endl;

cout << (p2x2->*pointer1)() << endl;

}

The typedef declarations are used to make the program a little more read-
able. There are two value functions, but this does not cause a problem, because
the pointer type is compared with the parameter lists to select the correct ad-
dress. The .* operator is used to dereferenced a pointer to a member. Thus the
member specified in the pointer declaration can be accessed in a particular in-
stance of the class. The ->* operator does the same for a pointer to an instance
of the class. The parentheses are needed because of operator precedence.

Pointers to members are used in programs that have to respond to dynamic
inputs. For example, programs that have windows based user interfaces some-
times implement their design with pointers to member functions. The pointers
support the relationship between a windows object, such as a button, and the
operation that should be performed when it is pressed. However, there are better
ways to do this. Virtual functions and abstract base classes, which are explained
in chapter 11, offer a much more elegant solution to this type of problem.

8.8 Nested classes

Classes (and structures) can be declared inside another class. They are called
nested classes and they reduce the global name space. Nested classes are useful
for implementation components. However, the overall class structure can get
messy. Here is an incomplete example that uses nesting:

class List {

public:

List();

insert( int data );

...

private:

class Node {

public:

Node( int data, Node* node );

void data( int somedata );

...

};

Node* root;

};
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The Node class is declared in the private section of List as part of a linked list
implementation.

Nested class declarations can be difficult to read. A cleaner way that can
sometimes be used is to employ a forward name reference:

class List {

public:

List();

insert( int data );

...

private:

class Node; // forward reference

Node* root;

};

class List::Node {

public:

Node( int data, Node* node );

void data( int somedata );

...

};

Here, just the class name Node is declared in List, and the actual class is
declared separately as List::Node. The name is only used before the full dec-
laration of Node to define a pointer, which is okay because this needs very little
information about the class. A definition of a Node object at this point for
example would not be possible.

The definition of a Node member function needs two scope operators:

void List::Node::data( int somedata )

{

thedata = somedata;

}

The member functions of a nested class have no special access to the enclosing
class. Structures can be nested in a similar way to classes.

8.9 Separate compilation

It is often convenient and sensible to separate a program into smaller com-
ponents. This helps to partition the design and can make development and
maintenance easier. In C++ this is done with the aid of header files. For each
component, its interface is put into a header file, and its implementation in a
source file.

A header file should contain all the information needed by the compiler to
check that the component is being used correctly. Detail of how the various
classes and functions are implemented is not provided. The source file contains
this information. Header files contain constants, structure and class declara-
tions, and function declarations. Source files contain the definitions of class
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member functions, static class data members, non-class function definitions and
any global components private to the implementation.

To use a component, a #include directive, naming its header file, is put
at the beginning of the program. When the program is compiled, a verbatim
copy of the header file is copied into the program file. This ensures that all
access to the component is type correct. The source file for the component
must be complied separately to produce an object file. This is linked to the
program, with other object files, to produce an executable file that can be run
on a computer. Header files are included like this:

#include <math.h> // a system library

#include <iostream.h> // a system library

#include "myclass.h" // an application component

Figure 8.1 shows the relationship between the parts of a program compiled as
separate units. In this example, the iostream and math files are system compo-
nents, and myclass is an application component. The program in §8.10 shows
how separate compilation can be used in practice. On many systems, object
code for the system components is stored in special files called libraries, which
are automatically accessed by the link program. Indeed, system components
like iostream are normally referred to as the standard libraries.

The management of this process, and the names of the various files, depends
on the development platform. For example, on a UNIX system the following
commands might be used:

g++ -c myclass.cxx

g++ myprog.cxx myclass.o -o myprog

The management of a large program, with many components, can be com-
plicated. In such cases, it is common practice to use a tool. A well known
UNIX tool is make which tracks file changes and builds programs by selectively
compiling and linking components. Many compilers provide development envi-
ronments that have integrated tools with similar capabilities to make. A typical
approach is to collect components together as a project that can be built to
form a program.

Components that use inline functions have to be managed in a slightly dif-
ferent way. Inline function definitions must be available at compile-time, so they
have to be in a header file. This can confuse interface and implementation. A
way around this is to use two header files, one for the interface part and an-
other for the inline part. These are arranged as shown in figure 8.2. There are
now two files containing implementation code. One for inline functions which is
included in the program via the normal header file, and another for non-inline
function that is compiled and linked with the program.

8.9.1 Multiple inclusion

Useful header files are often included in other header files. This can cause
multiple declaration errors when a file is included more than once in a single
compilation. The solution is easy. Use preprocessing directives in each header
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iostream.h myclass.h math.h

myprog.cxx myclass.cxx

myprog.o myclass.o Libraries

myprog

? ? ? ?

? ?

-

?

�

includeCompileLink

Figure 8.1: Separate Compilation

// file: myclass.h
// Myclass interface
#include "myclass.hxx"
...

// file: myclass.hxx
// Myclass inline
// source
...

// file: myclass.cxx
// Myclass source
#include "myclass.h"
...

// file: myprog.cxx
// a program
#include "myclass.h"
...

-

??

Figure 8.2: Managing inline functions
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file, like this:

// file : dogy.h

// Dog Management Classes

#ifndef DOGY_H

#define DOGY_H

// The body of the header file

#endif

When an #include "dogy.h" is encountered by the compiler, the dogy.h

file is processed. The #ifndef command in this file controls which statements
are passed to the compiler. If the name DOGY_H is not defined, all the statements
between the #ifndef line and #endif will be compiled. If it is defined, the
statements will be ignored.

The name DOGY_H is not defined at the begging of the compilation, so the first
time dogy.h is included, all the statements in this file will be compiled. After
this, because of the #define immediately after #ifndef, the name DOGY_H will
be defined, and subsequent includes will not compile the statements. In effect,
the file will be included only once for the compilation.

8.10 An example

This example shows how a header file can be used to support separate compi-
lation units. It is a simple list class for storing integers, which is implemented
uses a linked list. A linked list is a sequence of dynamically allocated nodes
connected by pointers. A private nested class is declared for the nodes used
to build this list. A constructor ensures that a newly created empty List is
correctly initialised. A destructor takes care of the data structure when a List

is destroyed. However, this is an example of an unsafe class because doing some
things, like using a List object as an input-only argument to a function, might
result in unpredictable behaviour. How this class can be made safe is discussed
in § 9.4. There are no const functions declared because a List object cannot
be sensibly used if it is declared as a constant.

Header file

#ifndef LIST_H

#define LIST_H

class List {

public:

List();

// Create a new list, empty() = true, end() = true

void before( int data );

// Insert new data before current item.

// New item becomes current item

// If end() true insert at end list

void after( int data );
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// Insert new data after current item

// New item becomes current item

// If end() true insert at end list

int current();

// Data value of current item

void next();

// Make the next item current

bool end();

// Past last item?

// if true current() undefined

bool empty();

// List empty?

// If true, end() = true and current() undefined

void top();

// Goto first item if one exists

void bottom();

// Goto last item if one exists

~List();

// Clean up

private:

class Node; // forward reference

Node* theroot;

Node* thecurrent;

Node* theprevious;

void clear(); // for destructor

bool attop_empty(); // At top of list or list empty?

bool atbottom(); // At bottom of list?

};

#endif

Source file

#include "list.h"

class List::Node {

public:

List::Node( int data, List::Node* node = 0 )

: thedata(data), thenext(node)

// Initialise a node with 'data' and connect it

// to 'node'.
// If 'node' not given end of list is indicated.

{}

int data()

// The data value in this node

{ return thedata; }

List::Node* next()

// The next node in the list

// or zero if there is not one.

{ return thenext; }

List::Node* splice( List::Node* node )
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// Put 'node' into the list after this node.

// 'node' is connected to the node this node

// was connected to.

{ node->thenext = thenext;

thenext = node;

return node; }

private:

int thedata;

List::Node* thenext;

};

List::List()

: theroot(0), thecurrent(0), theprevious(0) {}

void List::before( int data )

{

if ( attop_empty() )

// insert at 'theroot'
theroot = thecurrent = new Node(data,theroot);

else

// insert after 'theprevious'
thecurrent = theprevious->splice(new Node(data));

}

void List::after( int data )

{

if ( empty() )

// attach to 'theroot'
thecurrent = theroot = new Node(data);

else

if ( end() ) {

// insert after the 'theprevious'
thecurrent = theprevious->splice(new Node(data));

}

else {

// insert after 'thecurrent'
theprevious = thecurrent;

thecurrent = thecurrent->splice(new Node(data));

}

}

void List::next()

{

if ( !end() ) {

theprevious = thecurrent;

thecurrent = thecurrent->next();

}

}

bool List::empty()
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{

return theroot == 0;

}

bool List::end()

{

return thecurrent == 0;

}

bool List::attop_empty()

{

return thecurrent == theroot;

}

bool List::atbottom()

{

return thecurrent->next() == 0;

}

void List::top()

{

theprevious = 0;

thecurrent = theroot;

}

void List::bottom()

{

top();

if ( !empty() )

// step down list

while ( !atbottom() )

next();

}

int List::current()

{

return thecurrent->data();

}

void List::clear()

{

Node* dead;

while ( theroot != 0 ) {

// remove and delete top node

dead = theroot;

theroot = theroot->next();

delete dead;

}

// set to initial state

thecurrent = theprevious = 0;
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}

List::~List()

{

clear();

}

Program file

#include <iostream.h>

#include "list.h"

void main()

{

// make a short list

List mylist;

mylist.after(10);

mylist.after(11);

mylist.after(12);

// print list

mylist.top();

while ( !mylist.end() ) {

cout << mylist.current() << endl;

mylist.next();

}

}

8.11 Exercises

1. The following class holds information about a task in a real-time system:

class TaskInfo {

public:

TaskInfo( int anid, int apriority );

void addtiem( long millisec );

int id();

int priority();

long runtime();

private:

...

};

Write a TaskQueue class for storing objects of this type. It should have
member functions for adding and retrieving TaskInfo objects on a first
in first out basis.

Assume the TaskInfo class is provided as a separate component, with
a header file called "task.h". Implement the TaskQueue using separate
header and source files.
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2. Consider the following program that prints out a simple message:

#include <iostream.h>

void main()

{

cout << "Hello folks" << endl;

}

Without changing main in any way, modify this program to print:

Startup

Hello folks

Shutdown

3. Modify the TaskInfo in exercise 1 to support the definition:

const TaskInfo MAINTASK(0,0);

and implement the result.

4. Write a const correct class representing a rectangular games board, which
stores markers of type:

enum Marker { BLACK, WHITE, NONE };

The dimensions of an instance of Board are specified when it is declared.
Positions on a Board object are given as a pair of integers representing row
and column. Users of a Board object must be able to place markers by
giving their colour and position, and retrieve them by giving just position.
If an attempt is made to access a position that is not on the board, the
program should be terminated. For this exercise, include <stdlib.h>,
and use exit(99) to stop the program. It must be possible to find out
the dimensions of a Board object after it has been created. Use an inline
inmplementation if possible. To test const correctness, it must be possible
to use the class with the following function:

void print( const Board& brd )

{

for ( int r = 0; r < brd.rows(); r++ ) {

for ( int c = 0; c < brd.cols(); c++ )

switch ( brd.get(r,c) ) {

case BLACK: cout << "B "; break;

case WHITE: cout << "A "; break;

case NONE : cout << ". "; break;

default : cout << "? ";

}

cout << endl;

}

}
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Chapter 9

Friends and Operators

9.1 Friends

Functions and classes can be declared as friends of a class. Friends have access
to the private sections of a class. Friends are disliked by some programmers
because they are thought to betray encapsulation. This is a mistaken point of
view. Friends are part of their class as much as its member functions. They are
declared in the class and must be thought of and treated as part of the class.
However, the arbitrary declaration of friendship is very bad practice.

9.1.1 Friend functions

A function is declared as a friend like this:

class Stock {

friend void transfer( Stock& s1, Stock& s2, int amt );

// transfer amt of stock from s1 to s2

public:

Stock( int acode, double acost, int alevel);

...

private:

...

};

Friends are always public, so it is convenient to declare them at the beginning
of the class. The function transfer moves stock from one item to another. Its
definition, based on the example in chapter 7, is:

void transfer( Stock& s1, Stock& s2, int amt )

{

if ( amt > s1.thelevel ) {

s2.thelevel += s1.thelevel;

s1.thelevel = 0;

}

else {

s2.thelevel += amount

101
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s1.thelevel -= amount;

}

}

This function is not associated with Stock by a scope operator because it
is not a member function. Its name is global and it does not have a this

pointer. All access to Stock objects must be as arguments, using qualified
names. However, it is a friend of Stock, so it can use private data in s1 and s2.

Friend functions are generally a notational convenience. They allow us to
have a class interface with functions of the form f(wibble,wobble) rather than
wibble.f(wobble). Sometimes, the ability to specify parts of a class in this
form is useful.

9.1.2 Friend classes

A class can be declared as a friend in a similar way to a function with:

friend class Iterator;

All the member functions of Iterator are friends of the class that contains
this declaration. As an alternative, individual member function of one class can
be declared as friends of another class with a declaration of the form:

friend void X::f();

Class friendship is asymmetric. The access permission operates in only one
direction. Declaring a class as a friend does not give access to that class.

Friendship between classes implies dependency. Classes that have such a
relationship cannot be considered separately. They must be treated as a single
implementation entity. and we can refer to them as a compound class. Friend-
ship represents a behavioural relationship between the classes. The arbitrary
declaration of friendship is very bad practice. Some care is needed when friend
functions are used. For example, two classes with a common friend function are
connected. They become friends of each other. In fact, they are a symmetrical
coupled class. In general, connecting classes like this should be avoided. If a
coupled class is wanted, explicitly declare the participating classes as friends.

Friend classes are not used very often, but they can be very useful. A
common applications is as iterators for container classes (see exercise 9.3).

9.2 Operator overloading

Functions can be defined to overload standard C++ operators, like + or =, for
class objects. When an overloaded operator is used, the compiler automatically
calls the appropriate function. Almost all of the C++ operators can be over-
loaded, including the function call operator () and the subscript operator [].
However, there are some restrictions:

• New operators cannot be invented.

• An override cannot change the precedence, associativity or arity of an
operator.
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• The operators . .* :: ?: and sizeof cannot be overloaded

• The operators for standard types cannot be overloaded.

An operator function must be a non-static member function or have at least
one parameter whose type is a class, reference to a class, an enumeration or a
reference to an enumeration. Operator functions cannot have default arguments.
The only operator that has a default definition is the assignment operator. All
the other operators must be defined for a class before they can be used.

Operator overloading can greatly enhance the way class objects are used.
Classes with overloaded operators can extend the standard type space in intu-
itively useful ways. The <iostream.h> library’s use of the << and >> operators,
for example, makes a complicated set of classes comparatively easy to use. Nev-
ertheless, operator overloading can be overdone. The basic behaviour of a class
should come first, with operator overloading being considered as an additional
feature to make the class easier to use. It is sometimes called syntactic sugar.
It makes the syntax of a class interface nice, but does not effect the underlying
behaviour of the class.

As a simple example of how operator overloading can be used, we can declare
a vector class like this:

class Vector {

public:

Vector(int x, int y, int z);

Vector& operator*=( double d );

...

private:

...

};

Here, the function operator*= is an operator overload which performs scalar
multiplication. That is, its implementation multiplies every coordinate of the
vector by the same value, d. Given a Vector called top, the function can be
called with either of:

top.operator*=(3.4);

top *= 3.4;

More generally, binary operators can be defined as non-static member func-
tions taking one parameter, or as non-member functions with two parame-
ters. The expression xx � yy is interpreted as either xx.operator�(yy) or
operator�(xx,yy). However, an operator function taking a basic type as it
first argument cannot be a member function. So the expression aa + 2 can be
aa.operator+(2), but 2 + aa has to be operator+(2,aa).

A unary operator can be a non-static member function with no parameters or
a non-member function with one parameter. So the expression �xx is interpreted
as xx.operator�() or operator�(xx).

Table 9.1 gives a summary of the relationship between expressions and the
equivalent function call notation.
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Expression As member function As non-member function

�xx xx.operator�() operator�(xx)
xx� xx.operator�(0) operator�(xx,0)
xx � yy xx.operator�(yy) operator�(xx,yy)
xx[yy] xx.operator[](yy)

xx(yy,zz) xx.operator()(yy,zz)

xx->m xx.operator->()

xx = yy xx.operator=(yy)

where � is a standard operator such as +

Table 9.1: Operator Overload Function Notation

9.2.1 Increment and decrement operators

The operators ++ and -- can be used in prefix or postfix form.

As prefix operators they are the same as a normal unary operator. This
means they are non-static member functions with no parameters, or non-member
functions with one parameter. The prefix expression ++xx is interpreted as
xx.operator++() or operator++(xx).

Postfix operator functions are a little unusual. They must be non-static
member functions with one parameter of type int, or a non-member function
with two arguments the second of which must be of type int. When a postfix
operator function is called the int argument always has the value zero. So
the expression xx++ is interpreted as xx.operator++(0) or operator++(xx,0).
When the function is implemented, the integer parameter is ignored.

Some care is needed when writing these operator overloads if they are going
to be compatible with the general behaviour of the standard operators. Prefix
operators should return the value of the variable to which they are applied after
the operation has been performed; and postfix operators should return the value
of the variable before the operation is performed. The following example mimics
the behaviour of the standard ++ operators for a class object:

class Counter {

public:

Counter( int i = 0 )

: data(i) {}

int value()

{ return data; }

Counter operator++(int) // postfix

{ Counter pre = *this;

data += 1;

return pre; }

Counter operator++() // prefix

{ data += 1;

return *this; }

private:

int data;

};
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The way this works can be understood by considering the following assign-
ment between two Counter objects:

Counter c = 5, result;

result = c++;

Here, the postfix application of ++ to a Counter object causes the member
function c.operator++(0) to be called. When this executes, a copy of the
object is saved in the local variable pre using the this pointer (see §8.4). Then
the object is modified, and the saved value returned from the function. Notice
that the equivalent prefix operator overload does not save and return the original
value.

9.2.2 Assignment operator

The assignment operator function must be a non-static member function with
exactly one parameter. It overloads the = operator. (Assignment operator
functions are not inherited.) A default is generated if an assignment operator,
with a parameter of the same type as the class, is not defined for the class. This
has the form:

MyClass& MyClass::operator=( const MyClass& from )

{

// copy members of from to this class

return *this;

}

The default operator performs a memberwise copy. This copies each data
member from the parameter to the the object for which the default was invoked.
If an assignment operator is defined for the member, it is used, otherwise a
bitwise copy is performed. This default behaviour is an important characteristic
of C++, and is discussed further in §9.4. Finally, the assignment operator
returns a reference to the object for which it was invoked. A default assignment
operator will not be generated if the class has a non-static data member that is
a constant or a reference, or if any of its data members (or base classes) does
not have an accessible assignment operator. User defined assignment operators
are easy to define:

MyClass& MyClass::operator=( const MyClass& from )

{

if ( this != &from ) {

// perform necessary processing

}

return *this;

}

As expected, this function looks very like the default version. The if state-
ment checks for assignment to self by comparing the this pointer with the
address of the function’s argument.

More than one assignment operator function can be declared with param-
eters of different type. However, it is common practice to define only a re-
placement for the default assignment operator, and to also declare suitable con-
structors to convert other objects to the class type (see §9.2.7). In this way, the
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assignment overload function obtains its parameter via a constructor, which will
be automatically invoked, and many different types of object can be managed
by the same overload function. As a bonus, the constructors will perform a
similar service whenever the class is used as a function parameter.

The compound assignment operators, like +=, do not have a default be-
haviour like =. They are handled as ordinary binary operators, and do not have
to be member functions.

9.2.3 Function call operator

A call operator function must be a non-static member function. It overloads the
() of a function call, so that the expression xx(arg1,arg2,arg3) is interpreted
as xx.operator()(arg1,arg2,arg3).

Function call overloads can be used to make a class object behave like a set
of functions. As a trivial example we could add two member functions to the
Counter class given in the last section:

class Counter {

...

public:

...

void operator()( int count )

{ data = count; }

int operator()()

{ return data; }

private:

int data;

};

void main()

{

Counter ticker; // create instance

ticker(23); // set ticker to 23

ticker++; // adds one to ticker

cout << ticker(); // print current value

}

9.2.4 Subscripts

A subscript operator function must be a non-static member function with one
parameter. It overloads [], so that the expression xx[3] is interpreted as
xx.operator[](3). This overload is obviously very useful for making a class
object look like an array. Here is a possible member function for an IntArray

class:

int& IntArray:operator[]( int subscript )

{

if ( outrange(subscript) ) {

// error processing

}

return privatearray[subscript];
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}

The referential return type int& is significant. It allows the function to
be used on either side of an assignment operator. So aa[1] = aa[2] + 3 is
valid when aa is of type IntArray. In this case, the same function is called
for aa[1] and aa[2], which returns a reference to be used appropriately by
the assignment operator. When subscript overloads are used like this, it is not
possible differentiate between subscripts on the left and right-hand side of an
assignment operator. (Exercise 9.4 and its model solution give a method for
doing this.)

9.2.5 Pointers and address operators

We can make a class look like a pointer by overloading the -> and * opera-
tors. The class member access operator -> can be overloaded by a non-static
member function with no parameters. The expression xp->m is interpreted as
(xp.operator->()).m, which limits the way the function can behave. It must
return one of: a pointer to a class that has the specified member; an object
of a class for which operator-> is defined; or a reference to a class for which
operator-> is defined.

The standard unary * operator dereferences a pointer to an object. It can
be overloaded with a non-static member function with no parameters, or a non-
member function with one parameter. So the expression *xp is interpreted as
xp.operator*() or operator*(xp). The function can return any type that
is compatible with its intended behaviour. So, in the expression (*xp).m, the
function xp.operator*() must return an object with an accessible data member
called m.

The address operator & is also unary, and can be overloaded by the same
sort of functions as the * operator. To be consistent with the built operator, a
& operator overload function must return a pointer to an object.

9.2.6 New and delete

Standard dynamic memory management for a class can be replaced by over-
loading the allocation and deallocation operators: new, new[], delete and
delete[]. This might be done, for example, to optimise memory allocation
or to implement automatic garbage collection for the class.

An overloaded allocation or deallocation operator is a static member func-
tion, even if it is not explicitly declared as static. The operator new function
is always called with the amount of space requested as its first argument. The
type of this argument is size_t, which is a platform dependent integer type.
It is defined in the header <stdlib.h>. Additional parameters can be declared
and default arguments can be used. An allocation function should return void*.
This is automatically converted to a pointer to the allocation function’s class.
Constructor are called, as usual, after the allocation function is finished. If
any operator new function is declared for the class, the standard allocation
function is not available for that class. The following shows how the allocation
operators can be declared for a class:

#include <stdlib.h>
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...

class Myclass {

public:

Myclass();

Myclass( string note );

void* operator new( size_t space ); // A

void* operator new[]( size_t space ); // B

void* operator new( size_t space, int data ); // C

void* operator new[]( size_t space, int data ); // D

...

};

Here, the space parameter is the required allocation, and data is an additional
user provided parameter. The functions can be called like this:

Myclass* aaa = new Myclass("test1"); // use version A

Myclass* bbb = new(99) Myclass("test2"); // use version C

Myclass* bbb = new Myclass[24]; // use version B

Another* ccc = new Myclass("test4"); // error - wrong

// pointer type

In the second example above, the argument in new(99) is passed to the function
as the data parameter.

A deallocation function is implicitly called by deleting an instance of an
object. An operator delete function can have one or two parameters and
must return void:

class Myclass {

public:

...

void operator delete[]( void* addr );

void operator delete( void* addr, size_t space );

...

};

The first parameter is of type void*, and is the address of the released memory
block. This is the value that the operator new function returned when the
block was allocated. The second optional parameter is the size of the released
block. This is of type size_t, and it has the same value as the first parameter
of the operator new function when the block was allocated. A destructor, if is
is declared for the class, will be called before the operator delete function.

The standard allocation and deallocation functions can be overloaded with
appropriate non-member functions, and allocation functions with extra param-
eters can be declared. These will be applied to all classes that do not have there
own allocation and deallocation functions and to all non-class types. Take care,
overloading new and delete is never simple, and the damage caused by any
mistake is normally serious.

9.2.7 Type conversion

Type conversions will be performed automatically for classes if suitable con-
structors and conversion operators are declared. A constructor will be used if it
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can be invoked with a single argument that matches the type to be converted.
Here is an example:

class Puppy {

public:

Puppy( string name );

...

};

class Wolf {

public:

Wolf( string name );

...

};

class Dog {

public:

Dog();

Dog( char name[] );

Dog( string name );

Dog( double kilos );

Dog( Puppy littledog );

explicit Dog( Wolf wilddog );

};

void main()

{

double pounds = 65;

Dog woof;

Puppy lick("Spot");

Wolf bite("Big Bad");

woof = "Fido"; // Dog(char[]) called

woof = string("Fido"); // Dog(string) called

woof = pounds * 0.45; // Dog(double) called

woof = lick; // Dog(Puppy) called

woof = bite; // error - conversion not explicit

woof = Dog(bite); // okay - conversion explicit

}

Here, "Fido" is considered to be a C string so Dog(char[]) is called. To in-
voke Dog(string), an explicit string constant has to be used. The constructor
Dog(double) is called for an arithmetic value, and a Puppy class is converted
with Dog(Puppy). Implicit conversions like this can be prevented by declaring
the relevant constructor with the keyword explicit, as show with Dog(Wolf).
Conversion constructors are useful, but they are limited. They can only be
used for conversions to the class; they cannot be used for conversions to the
fundamental types; and they must be provided by the class designer.

Conversion operators can be declared for a class. These allow conversion
from a class to another type. So existing classes can be integrated without
modification. They can also convert to the fundamental types. A conversion
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operator must be a member function with no parameters and no return type.
It adopts the type given by its name. For example,

class Cat {

public:

...

operator Dog()

{ return Dog(thename); }

...

private:

string thename;

...

};

The member function operator Dog in this class is a conversion operator.
And it is used in the following to convert a Cat to a Dog:

Dog woof;

Cat meaow;

...

woof = meaow;

Here, the Cat meaow is converted to a Dog and then assigned to woof. As
another example, consider a Vector class. The length of a vector is called its
magnitude. This is a single number and it could be returned from a conversion
operator:

class Vector {

public:

operator double() const; // magnitude of vector

...

};

As required, it has no return type and no parameters. It is declared as
const because conversion operators do not change their object’s state. Its
implementation returns a double value:

Vector::operator double() const

{

double magnitude = ....; // calculate magnitude

return magnitude;

}

Conversion operators can be used explicitly, but they will also be implicitly
called if required. So all of the following are okay:

Vector top(1,2,3);

double length;

length = (double)top;

length = double(top);

length = 3.6 + top / 2;
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The built-in conversions can participate. So, for example, an int might be
converted to a double before a match with a constructor is found. At most, one
user defined conversion will be automatically applied to a single value. Explicit
conversions can be used to overcome this limitation, as the following show:

class Position {

public:

operator Vector();

...

};

...

Position p;

double m = p; // error - too many conversions

double n = Vector(p); // okay

Here, the automatic conversion from Position to double fails because two
conversion operators are needed. The error is avoided by making one of the
conversions explicit.

Almost any type can be used with a conversion operator, including pointers,
classes and enumerations. However, it is not possible to convert to void, or to
the operator’s own class (or its base classes).

9.2.8 Style

Operator overloads can be used to enhance the interface to a class. Always
define a operator to work in the same or a complimentary way as its built
in version. Do not surprise the user. Notable exceptions are the << and >>

operators. These are the built in bit shift operators, but are overloaded in the
standard C++ library <iostream.h> to represent input and output operations.
It is this overloaded meaning that is now considered to be normal by most C++

programmers.

It is often difficult to decide how to represent an operator overload. Some
guideline are:

• Make it a member if it updates the object.

• Make it a member if it returns an lvalue (i.e. it can be on the left-hand
side of an assignment).

• Make it a member if it references only the object, and declare it const if
it does not update the object.

• The operators =, [], (), ->, new, delete and conversion operators must
be member functions

• A binary operator function taking a basic type as it first argument cannot
be a member function.

• In general, if a binary operator function does not update its parameter
objects, make it a non-member function.
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• In general, it is acceptable to make non-member operator functions friends
of their class. If this is done, all operator functions will part of their class.
This will produce a consistent interface, and allow for an optimal imple-
mentation, but take care not to inadvertently couple classes as explained
in §9.1.2.

However, if suitable public member functions are declared for the class,
use them. This may mean that the operator does not have to be a friend
or member function.

• Consider the return type. If operators are going to be combined in ex-
pressions, a non-void type will be needed. Decide if the operator should
return an lvalue.

Return a reference if it is safe to do so. This is for efficiency with large
objects. Make it a const reference if the object should not be an lvalue.

9.2.9 I/O operator overloads

The <iostream.h> operators << and >> can be overridden. They must be
declared to be compatible with other <iostream.h> << and >> operators. So
their form is

ostream& operator<<( ostream& c, const T& t );

istream& operator>>( istream& c, T& t );

They are often declared as friends for efficiency and symmetry. But they do
not have to be if suitable accessor functions already exist. Once declared, they
in effect extend the standard I/O library. Their implementation must look like
this:

ostream& operator<<( ostream& os, const Dog& adog )

{

os << adog.name(); // print Dog data

...

return os;

}

istream& operator>>( istream& is, Dog& adog )

{

string aname;

is >> name; // input dog data

adog.name(aname);

...

return is;

}

The design of <iostream.h> overloads needs some care. The parameters
os and is must be declared as references, and they should be returned from
the functions, so that the overloads have the same behaviour as the standard
operators. Remember to use the parameter name rather than cout or cin in
these functions.
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The format of data in the input and output streams is important. Output
can be directed at the screen through cout. So do not inject line breaks, or s¡¡—
will be incompatible with the fundamental types. The << and >> operators can
be used with named files. In this context they are marshalling functions, that
write object to disk, and later retrieve them. Thus the >> operator must be
able to read anything the << operator can produce, and such functions must be
able to store and completely recover an object’s state. This is not simple.

If there is no need for a class to be compatible with the standard I/O streams,
do not overload << and >>. It is simpler, and will cause users of a class less
confusion, to declare a specialised function, called say display, that is designed
to output the relevant parts of a class to cout if this is all that is needed.

9.3 An example

The following is an example of operator overloading. It is a Money class that
stores numerical values with two decimal places. Is supports calculations in-
volving addition, subtraction, multiplication and division. The result of these
operations is rounded to the nearest penny (or cent), and the difference is ac-
cumulated, so the total error due to rounding can be obtained after a series of
Money calculations. Member functions are provided for temporarily suspend-
ing rounding error accumulation, and for resetting the accumulator to zero. A
Money object can be used with istream and ostream for input and output. This
is the class declaration:

class Money {

// addition operators

friend Money operator+( const Money& a, const Money& b );

friend Money operator+( long double a, const Money& b );

friend Money operator+( const Money& a, long double b );

// subtraction operators

friend Money operator-( const Money& a, const Money& b );

friend Money operator-( long double a, const Money& b );

friend Money operator-( const Money& a, long double b );

// multiplication operators

friend Money operator*( const Money& a, const Money& b );

friend Money operator*( long double a, const Money& b );

friend Money operator*( const Money& a, long double b );

// division operators

friend Money operator/( const Money& a, const Money& b );

friend Money operator/( long double a, const Money& b );

friend Money operator/( const Money& a, long double b );

// input output operators

friend ostream& operator<<( ostream& os, const Money& om );

friend istream& operator>>( istream& is, Money& im );

public:

Money();

// Initialise to zero

Money( long double avalue );

// Initialise to rounded 'avalue'
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operator long double() const;

// conversion to arithmetic type

static long double round();

// Value of rounding accumulator

static void clear_round();

// Reset rounding accumulator to zero

static void hold_round();

// Stop accumulating rounding errors

static void release_round();

// Restart accumulating rounding errors

private:

long double value; // money value

static long double rounds; // rounding accumulator

static bool updating; // accumulation flag

void doupdate( long double newvalue );

// update stored value and rounding accumulator

};

The interface to Money has been designed to allow mixed calculations, involv-
ing Money objects, and fundamental arithmetic variables and constants. Each
operator has been declared three times, with a mixture of long double and
Money parameters, which allows Money and arithmetic values to used on either
side of the operators. So the following is possible:

Money cash = 78.90, payment;

payment = 3.6 * cash;

payment = cash + payment;

payment = cash - 34;

double value = cash + payment; // convert Money to double

An implementation for Money is not difficult. Its most complicated aspect
is the calculation and accumulation of the rounding errors. The accumulator,
called rounds, is declared as a static variable because it has to collect rounding
errors from all the instances of Money in a program. A Boolean variable called
updating controls the accumulation of rounding errors, and this is also declared
as a static variable. These are defined and initialised with:

long double Money::rounds = 0;

bool Money::updating = true;

The private member function doupdate performs the rounding calculation:

void Money::doupdate( long double newvalue )

{

value = floor(( newvalue + 0.005 ) * 100) / 100;

if ( updating )

rounds += newvalue - value;

}

The rounded value is calculated by adding a half penny (or cent) to the input
value, and then truncating the result after two decimal places. The rounding
error is the difference between the original and rounded values. This is added
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to rounds only if updating is true. The value of updating is controlled by the
member functions hold_round and release_round and the accumulator can be
reset with clear_round. These are very simple:

void Money::hold_round()

{

updating = false;

}

void Money::release_round()

{

updating = true;

}

void Money::clear_round()

{

rounds = 0;

}

The function doupdate is used by the constructors and friends of Money.
The constructors look like this:

Money::Money() : value(0.0) {}|

Money::Money( long double avalue )

{

doupdate(avalue);

}

The operator overload functions for the division operator are defined as
follows:

Money operator/( const Money& a, const Money& b )

{

Money result;

result.doupdate( a.value / b.value );

return result;

}

Money operator/( long double a, const Money& b )

{

Money result;

result.doupdate( a / b.value );

return result;

}

Money operator/( const Money& a, long double b )

{

Money result;

result.doupdate( a.value / b );

return result;

}
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These are very similar, the only difference being the calculation of the argu-
ment passed to doupdate. Which one is called depends on the order and type of
the arguments used with the \ operator. Three operator\ function are declared
for efficiency, as is the way they are implemented. This approach minimises the
number of function calls. However, in this case, only one function with a much
simpler implementation is actually needed:

Money operator/( const Money& a, const Money& b )

{

return a.value / b.value ;

}

If this were the only division operator, calculations like 24.7 / pay would
still work. The arithmetic constant would be automatically converted to a
Money object by a call to a constructor. The constructor will also be called
to convert the result of the division calculation into a Money object, so that it
can be returned from the function. This works as required because the relevant
constructor calls doupdate. Thus, the Money class could have been written in a
more concise way, but at the cost of a slightly less efficient implementation.

9.4 Safe classes

Incorrect use of constructors, destructors and assignment operators in classes
that use dynamic memory allocation can result in data loss and damage. To
understand why there is a potential problem we must look at when and how
objects are copied. A C++ object is automatically copied when it is used with
an assignment operator; it is passed by value as an argument to a function; it
is used to initialise a new instance of its type; or it is passes by value from a
function with a return statement.

In all these cases a default behaviour is supplied: a member by member copy
is performed. This results in a shallow copy. If a data member is a pointer, it
is the value of the pointer that is copied, rather than the target data. This may
be okay, but in most cases it will produce unfortunate results. As an extreme
example, consider a class that contains a pointer to a dynamic data structure,
and a destructor function that deletes the structure:

class Stocklist {

public:

Stocklist( int size )

{ codeset = new int[size];

thesize = size;

for ( int i = 0; i < thesize; i++ )

codeset[i] = 1;

... }

~Stocklist()

{ delete[] codeset; }

...

private:

int* codeset;

int thesize;
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...

};

If an object of this type is passed to a function by value, a temporary copy is
automatically created. This is a shallow copy, so the original and the copy are
pointing to the same codeset. When the function is finished, the temporary
object will be destroyed. This will invoke the class’s destructor, which deletes
the array using the copy of the pointer in the temporary object. In summary,
we have passed a Stocklist object to a function as an input only argument
and some of its data has been destroyed. This is not what we would normally
expect.

This sort of complicated situation is easily avoided by declaring a copy con-
structor and an assignment operator for the class:

class Stocklist {

public:

Stocklist( int size )

{ ... }

Stocklist( const Stocklist& s )

{ buildnew(s.codeset,s.thesize); }

Stocklist& operator=( const Stocklist& s )

{ if ( this != &s ) {

delete[] codeset;

buildnew(s.codeset,s.thesize);

}

return *this; }

~Stocklist()

{ delete[] codeset; }

...

private:

int* codeset;

int thesize;

...

void buildnew( int acodeset[], int asize )

{ codeset = new int[asize];

thesize = asize;

for ( int i = 0; i < thesize; i++ )

codeset[i] = acodeset[i];

... }

};

Now, if a Stocklist object is passed to a function by value, the copy con-
structor will be called. This will create a deep copy of the object. When the
function finishes the destructor will be called, but this time it will be applied to
a discrete copy of the object and the original will not be damaged. The assign-
ment operator also performs a deep copy, but it checks to see if it is copying to
itself before deleting the old data and doing the copy.

An alternative is to prevent the class from being used in an unsafe way. This
is very easy to do, just declare the copy constructor and assignment operator
as private like this:
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class Stocklist {

public:

Stocklist( int size )

{ ... }

~Stocklist()

{ delete[] codeset; }

...

private:

Stocklist( const Stocklist& ) {}

Stocklist& operator=( const Stocklist& ) { return *this; }

private:

int* codeset;

int thesize;

...

};

This will prevent the class being used in an unsafe way. The compiler will
report an error if anything is done that would normally invoke the copy con-
structor, or assignment operator. In particular, it is not possible to pass a
Stocklist object to a function by value. An attempt to do so will cause a
compiler error. The functions do not need proper definitions, because they are
never actually called. Dummy inline bodies are given for correctness, because
some compilers and linkers complain if this is not done.

Restricting the use of constructors and operators in this way should be con-
sidered part of a class’s public behaviour, even though we are declaring private
functions, because it effects the way in which the class can be used.

9.5 Exercises

1. Write a Time class that stores hours, minutes and seconds. It should
have binary addition and subtraction operators for combining two Time

objects, and <iostream.h> insertion and extraction operators A single
constructor, with default values for hours, minutes and seconds should be
sufficient.

2. Make the List class given in §8.10 safe by:

(a) Restricting its copy constructor and assignment operator.

(b) Implementing a suitable copy constructor and assignment operator.

3. Write a class for storing names. It should have an iterator in the form of
a friend class. The maximum number of names that can be held should
be declared when a store is created. For the purpose of this exercise, the
store need only have functions for adding a name, checking if a name is
already in the store, and for detecting if there is room for more names to
be added. The iterator should provide facilities for stepping through the
names in the store, determining when all the names have been processed,
and for restarting the iteration.
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4. Write a class with its subscript operator overloaded in such a way that
the operator has very different behaviour when used on different sides
of an assignment operator. For this exercise, make the operator print
a diagnostic messages giving the subscript, the side of the assignment
operator the [] is on, and if it is on the left hand side, the value being
assigned. So x[4] = 6 will generate a message something like subscript

4 on LHS, with 6 being assigned. When [] is used on the right of an
= return a dummy integer value of say 99.

This exercise is not easy. Consider using two classes, one being a helper
class with an overloaded assignment operator.
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Chapter 10

Inheritance

10.1 Using inheritance

Objects sometimes share common behaviour. For example, if we were to manage
information about cars and buses, there might be operations that could be
applied to both of these types of object. This can be achieved by having two
classes with the same member functions. Alternatively, if the common behaviour
can be reasonably expressed as a separate class, inheritance can be used. A
Vehicle class is defined that captures the common behaviour of cars and buses.
Then specialisations of this class are declared using inheritance: we derive Car

and Bus classes from Vehicle. The class Vehicle is called a base class of Car.
The behaviour or specification of a derived class is composed of its own

public members and those in its base classes. This makes sense because there
is an “is a” relationship between derived and base classes: a car is a kind of
vehicle. So we would expect a Bus object to respond to the same operations
as a Vehicle object. The public members of a base class must be considered
as part of its derived classes. Although base and derived classes are declared
separately, their public sections contribute to single derived behaviour.

A derived class has the same type as any of its base classes. Wherever the
base class is used, an object derived from the base can also be used. In this
way, a derived class is a subtype of its base class.

Inheritance has advantages. It encourages effective program decomposition,
and it can be used to extend the standard type system of C++.

121
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10.2 Simple inheritance

The following is a declaration for a time class:

class Timec {

public:

Timec();

Timec( long sec );

Timec( int hr, int min, int sec );

void forward( int sec = 1 );

void reset();

int pm() const;

void showtime( ostream& c ) const;

private:

long seconds;

void put_seconds( int h, int m, int s );

void get_hms( int& h, int& m, int& s ) const;

};

This has a few constructors, and some functions for printing, advancing, reset-
ting, and checking the time. As well as being used to define time objects, Timec
can be used as a base class like this:

class Tagtime : public Timec {

public:

Tagtime( const string& atag, const Timec& time );

void newtag( const string& atag );

void showtag( ostream& c ) const;

private:

string thetag;

};

Here, the class Tagtime, which is a time with a descriptive string, is derived
from Timec.

All the public member functions of Timec can also be used with a Tagtime

object. The following is an equivalent declaration for Tagtime which shows all
the available functions:

class Tagtime {

public:

Tagtime( const string& atag, const Timec& time );

void newtag( const string& atag );

void showtag( ostream& c ) const;

void forward( int sec = 1 );

void reset();

int pm() const;

void showtime( ostream& c ) const;

};

The Tagtime class is used just like the Timec class:

Timec time1(12,0,0);

time1.forward();
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time1.reset();

Tagtime time2("Home time",Timec(17,40,0));

time2.forward();

time2.newtag("No time");

time2.reset();

Anything that can be done to a Timec object, can also be done to a Tagtime

object, because Timec is a public base class of Tagtime. The Timec class is part
of Tagtime, and its public members are also public members of Tagtime. When
a Timec member function is used with a Tagtime object, the function is applied
to the object’s Timec part. However, Tagtime member functions cannot access
the private members of Timec.

10.3 Initialisation

The constructor of a derived class cannot access the private members of it
base class, so the base class data cannot be initialised directly. If it exists,
the default constructor for the base class will be automatically called. As an
alternative, a specific constructor can invoked by specifying it in an initialiser
list. For example, the constructor for Tagtime specifies Timec(t) which is the
copy constructor for Timec:

Tagtime::Tagtime( const string& atag, const Timec& t )

: thetag(atag), Timec(t) {}

The constructors for a class object are called in a specific order. First base
class constructors in declaration order; then data member constructors in dec-
laration order; and finally the body of the specified constructor is executed.
An initialiser list specifies which constructors should be used. The default con-
structor for a class is used if one is not given in the list. Thus a constructor
that takes no arguments need not appear in the list. The list can also contain
constructors for member class objects. The order of constructors in the list is
irrelevant. Destructors are called in reverse order to the constructors.

10.4 Copy constructors and assignment

Unlike other overloaded operators, the assignment operator is not inherited.
This means that when assignment is used with instances of a derived class, the
assignment operator in its base class is not directly executed.

If an assignment operator is not declared as a member function of a class,
memberwise copying is used when instances of the class are assigned. This
default behaviour consists of each base class and data member being copied
from source to assignment target. If an assignment operator is declared for any
of the base classes or data members, it will be invoked to perform the copy,
otherwise a memberwise copy will be applied.

If an assignment operator is declared as a member function of a class, this
function must take complete responsibility for the assignment of all data mem-
bers and base classes. For example,
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class Derived : public Base {

public:

Derived& operator=( const Derived& derv )

{ if ( this != &derv ) {

idata = derv.idata;

cdata = derv.cdata;

*static_cast<Base*>(this) = derv;

}

return *this;

}

...

...

private:

int idata;

Aclass cdata;

...

};

The assignment operator function first checks to see if the source and target
objects are the same. This is done by comparing the this pointer, which holds
the address of the object for which the function was invoked, with the address
of the parameter derv. If they are different, the = operator is used to copy
the base class and each of the data members from the parameter object to the
function’s object.

Copying the derived class data members is simple, but the base class is a little
more complicated. To apply the = operator to just the Base part of Derived,
the this pointer is cast from type Derived* to Base*. This is dereferenced
to be the target of the assignment. The right-hand operand of the assignment
is the parameter derv, and this is automatically sliced so that its Base part
fits into the Base part of Derived. The cast is performed with a static_cast

which is explained in §13.2.

Copy constructors are similar to assignment operators. In the absence of
such a constructor, a memberwise copy is used to initialise a new class object
from an existing one. The memberwise copy is applied to all base classes and
data members of the class. A copy constructors will be used if it exist in the
base class and data member, otherwise a memberwise copy will be applied.

If a copy constructor is declared in a class, it must manage all of the work
required to initialise a new instance of the class. Using Derived as an example,
its copy constructor might look like this:

Derived::Derived( Derived& derv )

: idata(derv.idata), cdata(derv.cdata), Base(derv) {}

Here, an initialiser list that includes the base class is used. Each of the data
members is initialised with the appropriate data member from the parameter
derv. The base class is initialised with the whole Derived parameter, from
which the Base part is automatically extracted. If the base class has a copy
constructor, this will be invoked, otherwise a default copy constructor will be
generated to perform a memberwise copy.
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10.5 Overriding inherited functions

Inherited functions can be redefined or overridden. For example, we can declare
a class based on Timec:

class Daytime : public Timec {

public:

enum Daytime( int day, int hr, int min, int sec );

void reset();

void forward( int seconds );

void showday( ostream& c ) const;

private:

int theday;

};

This class extends Timec with a day number. The reset and forward functions
in Timec are overridden because they have to handle the day number. As an
alternative, specially named functions such as dayforward could be declared,
leaving the original Timec member functions visible. However, overriding base
class functions is a good way of maintaining a consistent interface in a derived
class.

The overridden functions are members of Daytime and their definitions are:

void Daytime::reset()

{

theday = 0;

Timec::reset();

}

void Daytime::forward( int seconds )

{

int prevpm = pm();

Timec::forward(seconds);

if ( prevpm && !pm() )

theday++;

}

Both of these functions combine processing for the Daytime part of the class
with the compatible processing for Timec. The derived class has no access to
the private parts of Timec, so the work is delegated to the overridden functions
in Timec. These are called with a scope operator to prevent a recursive loop.
The Daytime::forward function uses the pm function in Timec to identify a
transition from one day to the next. The pm function does not need a scope
operator because its name is unique within Daytime and Timec.

The constructor for Daytime is simple to implement using an initialiser list:

Daytime::Daytime( int day, int hr, int min, int sec )

: Timec(hr,min,sec), theday(day) {}

Overriding does not remove a function from the base class, it just replaces it
in the derived class, hiding the original. Under some circumstances the original
can still be used. For example, if an instance of a derived class is accessed
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through a pointer to its base, any overriding functions present in the derived
class will ignored.

If the function being overridden is overloaded (see §6.6), then all the other
functions in its overload set are also hidden. The overload set being those
functions with the same name but with different signatures. This behaviour is
called name hiding.

10.6 Restriction

The behaviour of an inherited class can be restricted by overriding its member
functions. We could have decided that Tagtime objects should not be reset,
even though this operation is available for its base class Timec. The reset

function in Timec can be disabled by declaring it as private in Tagtime:

class Tagtime : public Timec {

public:

Tagtime( const string& atag, const Timec& time );

void newtag( const string& atag );

void showtag( ostream& c ) const;

private:

void reset() {}; // hides inherited reset

string thetag;

};

It does not have to do anything, so it is defined inline with an empty body.
Now, if reset is used with a Tagtime object, the compiler will report an error:

Tagtime time2("Home time",Timec(17,40,0));

time2.forward();

time2.newtag("Tea time");

time2.reset(); // error - private in derived class

Restriction does not remove a function from the base class, it just hides it in
the derived class. Under some circumstances it can still be used. For example,
if an instance of a derived class is accessed through a pointer or reference to its
base, any restrictions present in the derived class will not be enforced.

10.7 Multiple inheritance

A class can have more than one base class. This is called multiple inheritance.
As a simple example, we will declare two classes, Time and Date:

class Time {

public:

Time() : mins(0), hours(0) {}

void set( int h, int m )

{ mins = m; hours = h; }

void get( int& h, int& m ) const

{ m = mins; h = hours; }

private:
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int mins;

int hours;

};

class Date {

public:

Date() : day(0), month(0), year(0) {}

void set( int d, int m, int y )

{ day = d; month = m; year = y;}

void get( int& d, int& m, int& y ) const

{ d = day; m = month; y = year; }

private:

int day;

int month;

int year;

};

These are used to form another class called Appointment. There is an “is a”
relationship between the classes: Appointment is a Time, and Appointment is a
Date. The new class looks like this:

class Appointment : public Time, public Date {

public:

Appointment();

void set( const string& c );

string get() const;

void display( ostream& c ) const;

private:

string comment;

};

It has two base classes, Time and Date. Its behaviour combines its public section
with the public parts of both these classes.

The member function names in the base classes, are unfortunately similar,
so a lot of scope operators have to be used. For example the display function
has to access information in both of the base classes using their get functions:

void Appointment::display( ostream& c )

{

int day, month, year, hour, min;

Date::get(day,month,year);

Time::get(hour,min);

c << day << '/' << month << '/' << year;

c << " @ " << hour << '.' << min;

c << " | " << comment;

}

The scope operator is also needed, when the Appointment class used, to distin-
guish between three different set functions:

Appointment urgent;

urgent.Time::set(1,30);
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urgent.Date::set(1,2,1992);

urgent.set("go to shops");

urgent.display();

When set is called without a scope operator, the function in Appointment is
used. There is no initialiser list for Appointment, which means the default
constructors Timem() and Date() are invoked.

10.8 Virtual base classes

There is a particular problem associated with multiple inheritance. When a
base class is accessed via two different inheritance routes, the base class may
not be unique. This situation is easier to understand with an example.

(a) Without virtual base class

ShiftBit

Shiftreg

Reg

Bitreg

Reg

(b) With virtual base classes

ShiftBit

Shiftreg

Bitreg

Reg

Figure 10.1: Arrangement of classes with multiple inheritance

Consider two classes Shiftreg and Bitreg, both derived from Reg. And an-
other class called ShiftBit derived from Shiftreg and Bitreg. Figure 10.1(a)
shows the normal relationship between these classes. Here, there are two dis-
tinct instances of Reg: one accessed through Shiftreg and the other through
Bitreg. Sometimes this is exactly the relationship required, but in this case we
want Shiftreg and Bitreg operations to be applied to the same data value.
Thus separate instances of Reg are inappropriate. A single shared instance of
Reg is obtained by making Reg a virtual base class of Bitreg and Shiftreg, as
shown in figure 10.1(b).

The following example demonstrates how virtual base classes are declared:

class Reg {

public:

Reg()

: thevalue(0) {}

Reg( int avalue )

: thevalue(avalue) {}

int value()

{ return thevalue; }

void value( int avalue )

{ thevalue = avalue; }

private:

int thevalue;
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};

class ShiftReg : public virtual Reg {

public:

ShiftReg( int n = 0 ) : Reg(n) {}

void shiftleft();

// shift register value left one bit

void shiftright();

// shift register value right one bit

};

class BitReg : public virtual Reg {

public:

BitReg( int n = 0 ) : Reg(n) {}

void setbit( int mask );

// Set bits in register to one, depending on mask.

// If mask bit is one, equivalent bit in register

// is modified, otherwise bit is unaffected

void clearbit( int mask );

// Set bits in register to zero depending on mask.

// If mask bit is one, equivalent bit in register

// is modified, otherwise bit is unaffected

};

class ShiftBitReg : public ShiftReg, public BitReg {

public:

ShiftBitReg( int n ) : Reg(n) {}

};

Here, the virtual keyword is used when declaring Reg as a base class. The
member functions of ShiftReg and BitReg both use Reg:

void ShiftReg::shiftleft()

{

value(value() * 2);

}

void BitReg::setbit( int mask )

{

value(value() | mask);

}

Notice that the derived class requiring the behaviour of multiple inheritance is
not the one that asks for it. This has to be done by the classes immediately
derived from the virtual base class.

The declaration of a virtual base class in the example above ensures that
there is one copy of Reg in an instance of ShiftBitReg. So the following, which
calls member functions from the base and derived classes, works as expected,
with all operations being applied to the same data:

ShiftBitReg register1(24); // from ShiftBitReg
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register1.value(16); // from Reg

register1.shiftleft(); // from ShiftReg

register1.setbit(2); // from BitReg

There are restrictions on the way constructors can be used with virtual base
classes. A constructor for a virtual base class will only be invoked from the
derived class that actually creates the object. Base class constructors specified
in the initialiser lists of intermediate classes will not be called. However, the
initialiser lists must still be correctly formed and the constructors must be de-
fined in the relevant base classes. In the above example, when the instance of
ShiftBitReg called register1 is created, the constructor Reg(int) is executed
once with an argument of 24. It is not invoked again when the constructors for
ShiftReg and BitReg are executed as part of the object’s construction, despite
its specification in their initialiser lists. If the creating class does not explicitly
specify a constructor for a virtual base class, the default base class constructor
is used.

10.9 Class access

There are three levels of access to a member of a class: public, private and
protected. Public members are available to users of an instance of the class.
Private members can only be used by the friends and member functions of their
class. Protected members are not available to users of an instance of the class,
but they can be used by the friends and member functions of a derived class.
The following example demonstrates the rules of access for the protected section
of a class:

class Base {

public:

void pub();

protected:

void prot();

private:

void priv(); // can only be used in pub() and prot()

};

class Derived : public Base {

public:

void test()

{ pub(); // okay

prot(); // okay

priv(); // error - cannot access private member

}

};

void main()

{

Base bb;

bb.pub(); // okay

bb.prot(); // error - cannot access protected member
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bb.priv(); // error - cannot access private member

Derived dd;

dd.test(); // okay

dd.pub(); // okay

dd.prot(); // error - cannot access protected member

dd.priv(); // error - cannot access private member

}

In summary, if the declaration is:

private The data or function can only be used by member functions and friends
of the class in which they are declared.

protected The data or function can only be used by member functions and
friends, plus member functions and friends of derived classes.

public The data or function can be used by member functions and friends of
the class, and non-member functions.

The public and protected sections of a class allow two interfaces to exist at
the same time: one that specifies the behaviour of objects of that class, and
another which assists the implementation of derived classes. The approach used
for the design of the protected part of a class should be the same as that used
for its public parts. They are both interfaces that define the behaviour of the
class. The data members of a base class can be declared as protected, but
this is not a recommended approach. Allowing access to data means that the
implementation of the base class cannot be altered without disrupting derived
classes. It is much better to provide protected access functions that mask the
implementation of the base class.

10.10 Methods of inheritance

A base class can be declared as public, private or protected when it is inherited,
as the following shows:

class Derived : public Base {...};

class Derived : protected Base {...};

class Derived : private Base {...};

class Derived : Base {...}; // private by default

The kind of inheritance used affects the visibility of the base class mem-
bers, as shown in figure 10.2. A derived class can always access the public and
protected sections of its base class, but cannot access the base class’s private
section. When public inheritance is used the public members of the base class
become part of the public section of a derived class, and in a similar way, the
base class’s protected section is merged with a derived class’s protected section.
If protected inheritance is used, the public and protected sections of the base
class become part of a derived class’s protected section. Thus the public mem-
bers of the base class are not available to normal users of a derived class. If
private inheritance is used, the public and protected sections of the base class
both become private, and are not visible to normal users of a derived class.
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private protected public

private protected public

private protected public

private protected public

public inheritance

protected inheritance

private inheritance

Figure 10.2: Access after inheritance

When private or protected inheritance is used, access to the members of the
base class can be adjusted back to at most its original form, as the following
example shows:

class Base {

public:

int pub1();

int pub2();

int pub3();

private:

int priv1();

...

};

class Derived : private Base {

public:

Base::pub1;

int pub2(); // function overriding

Base::priv1; // not allowed

private:

...

};

void main()

{

Derived dd;
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cout << dd.pub1() << endl; // Base::pub1 executed

cout << dd.pub2() << endl; // Derived::pub2 executed

cout << dd.pub3() << endl; // Base::pub3 not accessible

}

Here, the function pub, declared public in Base, would normally be private
in Derived because private inheritance is used. However, in this example, it
changed to have public access by naming it in the public section of Derived.
The name must be given in its full form with a scope operator. In this case,
Base::pub. Any attempt to give a member more access than its original, as
with priv1, will be rejected.

We can call this process exposure. Do not confuse this method with function
overriding, which is also demonstrated in the above example. An overridden
function replaces the original, while an exposed function allows use of the origi-
nal. In a sense, exposure is the reverse of restriction, discussed in §10.6, where a
function in a publicly inherited class is overridden as a private member function.

10.11 Access through a base class

Classes and inheritance can be used to create programmer defined data type
hierarchies. We have already seen, in chapter 7, that classes are treated as data
types. Public inheritance extends this idea to allow subtypes. This means that
wherever instances of a base class are allowed by the type system, an instance
of a class derived from the base can be used. This has a significant restriction:
derived class members cannot be used. Only those members defined in the base
class and publicly inherited are available.

There can be permanent loss of information. Consider the assignment of a
derived object to a base class object. This will be allows because the derived
class is a subtype of its base. However, the base class object is not big enough
to hold all the information stored in the derived object. The consequence is
simple: the derived part of the object is discarded and only the base class’s
portion of the object is copied to the assignment target. This process is called
slicing. The following generalised example illustrates the slicing mechanism:

class Base {

public:

Base( int data ) : basedata(data) {}

int basef()

{ return basedata; }

private:

int basedata;

};

class Derived : public Base {

public:

Derived ( int data )

: dervdata(data), Base(-data) {}

int dervf()

{ return dervdata; }

private:
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int dervdata;

};

class Derived2 : public Base {

public:

Derived2 ( int data )

: Base(-data) {}

};

void main()

{

Base b1(1);

Derived d1(2), d2(3);

Derived2 d3(4);

d1 = d2; // simple copy

b1 = d2; // slice off base class part

d2 = b1; // error: Derived not subtype of Base

d3 = d2; // error: Derived2 not subtype of Derived

cout << b1.basef() << endl; // okay -3 printed

cout << b1.dervf() << endl; // error: dervf not in Base

}

Here, when d2 is assigned to d1 a full copy is performed, and d2 is exactly equal
to d1. When d2 is assigned to b1, an instance of its base class, it is sliced. Thus
object b1 does not hold the the value of dervdata from d1. The basef function
can be used with b1, but the dervf function cannot. The assignment of b1 to
d2 fails because a base class is not a subtype of its derived class. And d3 = d2

fails because two classes derived from the same base class are not subtypes of
each other.

A pointer to an instance of a derived class can be copied to a pointer to an
instance of its base class. No slicing is applied to the object, but access to it
though the pointer is restricted. Only the base class portion of the object is
available. Thus:

Base* pb;

Derived d1(5);

pb = &d1;

d1.dervf(); // okay

bp->derv(); // error

References to base and derived objects behave in a similar way:

void myfunction( Base bin, Base& bout, Derived& dout )

{

bin.dervf(); // bin is sliced

// error: not a member of base class

bout.basef(); // okay

bout.dervf(); // bin is not sliced

// error: not a member of base class

dout.basef(); // okay

dout.dervf(); // okay
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}

void main()

{

Base b2(30);

Derived d5(3);

Derived2 d6(20);

myfunction(b2,b2,d5); // okay

myfunction(d5,d6,d5); // okay

myfunction(b2,b2,b2); // error - 3rd arg is of base type

}

In this example, myfunction has three parameters of type Base, Base& and
Derived&. Obviously, instances of Base can be used for the first two parameters.
But these parameters can also have arguments that are instances of Derived or
Derived2. For the first parameter, of type Base, any instance of a derived class
will be sliced and the remaining value passed into the function for input only.
The second parameter is a reference, so it can be used for input and output. A
derived object can be used as its argument. It will not be sliced, but only its
base part can be used in the function

Subtyping is only available with public inheritance. If private or protected
inheritance is used, there is no subtype relationship between base and derived
classes.

10.12 Design style

Deciding how best to use inheritance in a program design can be difficult. The
choice of base and derived classes is not always obvious. In the absence of a
more organised object oriented design method, there are two complimentary
ways of identifying possibilities for inheritance in a program design. Look for
“is a” relationships between objects. If Aaa is a Bbb, make Bbb a base class of
Aaa. In addition, look for common behaviour in a group of classes. Move this
behaviour into a separate class and derive the other classes from this new class.

If a base class is well designed, it can be used during systems maintenance
and evolution without modifying its implementation. Its public and protected
sections defining a stable interface for the use of derived classes. In this way,
inheritance promotes code reuse because existing classes can be exploited to
develop new derived classes. However, the key feature for reuse is the encapsu-
lation provided by the public and protected interfaces rather than inheritance
itself. Base classes should be identified by behavioural decomposition without
reference to code reuse. Conceptually it is behaviour that is being reused and
shared, not implementation.

Code reuse is an important side effect of inheritance, but it must not be
allowed to dominate design decisions. Two classes might both have operations
that could share code, but that does not mean that they should be linked by a
common base class. For example, a Car and a Vegetable class might both have
member functions that calculate weight. An approach that is preoccupied with
code reuse might lead to a common base class called say Weighablething. In
contrast, a behavioural approach would most likely identify these as completely
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separate objects, because cars and vegetables do not usually have much in com-
mon. So a shared base class would not be used. A behavioural approach to class
decompositions is preferred because it reflects the relationship between objects
rather than their implementations. Of course, the implementations of Car and
Vegetable may use classes and functions that are the same, but inheritance
will not be employed just to achieve code reuse.

The different forms of C++ inheritance can cause confusion. Only public
inheritance supports a behavioural “is a” relationship and subtyping. The other
forms, protected and private, are really forms of containment. Their effect on
users of the derived class is exactly the same as if the base class had been declared
as a private data member instead of being inherited. They do not make a derived
class a subtype of its base class, and they do not support the “is a” relationship.
Generally, private and protected inheritance should be avoided and containment
used instead. Nevertheless, they are used by some programmers as a notational
convenience. For example, naming functions, to expose them in a privately
derived class, is easier than writing complete functions that delegate operations
to a contained class object.

10.13 Exercises

1. The following Account class stores money values. Money can be deposited
or withdrawn, and the current balance can be obtained. Objects of this
type are initialised with a money value of zero:

class Account {

public:

Account() : amount(0) {}

void deposit( float money )

{ amount += money; }

void withdraw( float money )

{ amount -= money; }

float balance() const

{ return amount; }

private:

float amount;

};

Define another class called Interest. This new class should have the
same behaviour as Account, but should also have member functions for
storing and retrieving an interest rate, calculating its value, and adding
or removing interest from the account.

2. Write a charity project class called Cproj that has start and finish dates
and a money account. The start and finish dates should be set in the
class’s constructor, and only read access allowed after this. Withdrawals
should not be allowed for the money account. For simplicity, store the
dates as strings. Use the Account class from exercise 10.1 as a private
base class. Consider if the use of private inheritance would suitable for an
alternative Cproj class that had more than one money account.
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3. Given the Account and Interest classes from exercise 10.1.

(a) Write a Named class that has all the properties of Account, plus an
account name and code. It should be impossible to change the code
after an instance of this class has been created.

(b) Write a class called Inamed that has all the properties of Named and
Interest. Clearly, there should only be one instance of the Account

base class present. The Interest class as it is designed for exer-
cise 10.1, is not suitable. How should it be changed to work in this
new context?



138 CHAPTER 10. INHERITANCE



Chapter 11

Virtual Functions

11.1 Polymorphism

In general, the concept of polymorphism is concerned with the capability a
programming language has for describing the behaviour of a function without
depending on its parameters. In an object oriented language this extends to a
program’s ability to treat many forms of a class as thought they were one. In
C++ polymorphism is supported in a number of ways:

Adhoc Function overloading provides a kind of polymorphism, where the same
operation, in the form of a function name, can be applied to different
objects. Adhoc polymorphism is also present when different class objects
have functions with the same name and purpose. So, for example, a
number of classes might have a function called print that displays a value
on a computer’s screen. Adhoc polymorphism can happen by accident,
but it is normally planned.

Parameterised A class can have type parameters that are supplied at compile-
time to create a distinct version of the class. All instances of such a class
will have the same behaviour and will respond to the same operations.
This facility is provided by templates which are explained in chapter 12.

Structural Inheritance provides a form of polymorphism. Structural, or in-
clusive, polymorphism can be static or dynamic. Static polymorphism
is present in all class inheritance hierarchies. It is supported by normal
inheritance, as discussed in chapter 10, and it is resolved at compile-time.
Dynamic structural polymorphism is resolved at run-time. It uses point-
ers and references to class objects, and it has to be designed into a class
hierarchy using virtual functions. This chapter concentrates on this kind
of polymorphism.

A classic example of the use of polymorphism is a graphical interface. Dif-
ferent shape objects such as Circle and Square must respond to the same
operations, such as display and rotate. So a list of Shape objects can be
displayed by performing a display operation on all the objects in the list. It is
unnecessary to know exactly what shapes are in the list because all objects of
this type respond in an appropriate way to a display operation.
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11.2 Using virtual functions

The mechanism for providing dynamic polymorphism involves common base
classes, virtual functions, function overriding, and pointers or references to class
objects. Polymorphic operations are defined as virtual functions in a base class
that is publicly inherited by all the classes that will respond to the operation.
The virtual functions are overridden in the derived class to provide suitable
responses. When Derived objects are accessed through pointer, or references, to
their base class, a call to a virtual function will be directed to the appropriate
overridden function in the derived class. The selection of the actual function is
performed at run-time. This is called dynamic or late binding.

A virtual function is declared like this in a class:

virtual void display();

It has almost the same format as an ordinary member function, and it can be
defined in the same way. If a separate definition is used, it should not repeat
the virtual keyword. The definition provided in the base class will be used if
the virtual function is not overridden in a derived class.

The whole mechanism may be complicated to understand but it is easy to
use in practice. The rules are:

1. Declare a base class that defines a common interface. The common fea-
tures are given as virtual functions.

2. Declare derived classes with member functions that override the virtual
functions in the base class.

3. Create instances of the derived classes.

4. Access the derived class instances with pointers or references to the base
class.

As an example, the following is a simplified graphic interface that draws
shapes:

class Shape {

public:

...

virtual void display();

virtual void rotate();

private:

...

};

class Circle : public Shape {

public:

...

void rotate();

void display();

private:

...

};



11.2. USING VIRTUAL FUNCTIONS 141

class Square : public Shape {

public:

...

void rotate();

void display();

private:

...

};

The Square and Circle classes inherit shape and override its virtual functions.
Suitable definitions for the overridden functions must be provided. The Shape

class hierarchy is used in the following incomplete program, which stores and
displays a number of different shapes:

void main()

{

...

Square square1, square2;

Circle circle1;

...

Shape* shape[MAX_SHAPES]

= { &square1, &square2, &circle1 };

...

for ( int i = 0; i < MAX_SHAPES; i++ ) {

if ( shape[i] != 0 )

shape[i]->display();

}

...

}

This has an array of pointers to Shape, which is loaded by an initialiser with the
addresses of objects derived from Shape. The array is processed with a for loop
that applies a display function to all the objects pointed at by the array. The
unused elements in the array are automatically set to zero by the initialiser, so
the for loop can check if an element of the array is empty, and ignore it. The
function display is virtual, so the version executed in each case is not the one
defined in Shape, but the one that is in Circle or Square, as appropriate.

Virtual functions can also work in the absence of pointers or references to a
base class if they are called from within the base class. Consider the following:

class Base {

public:

void do_it()

{ action(); }

virtual void action();

...

};

class Derived : public Base {

public:

void action();
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...

};

void main()

{

Base b;

Derived d;

b.do_it(); // Base::action() called

d.do_it(); // Derived::action() called

}

Here, the function action is declared in Base, and overridden in Derived. The
Base member function do_it calls action. If do_it is called for an instance of
Base, then action in Base is called, as expected. However, if do_it is called
for an instance of Derived, the virtual nature of action has an effect. It is still
do_it in Base that is invoked, but when this calls action, it is the overriding
function in Derived that is invoked, not the version in Base.

11.3 The behaviour of virtual functions

The behaviour of virtual and non-virtual functions is different. Consider the
following classes, where Derived inherits Base, and overrides one of its virtual
functions and one of its non-virtual functions:

class Base {

public:

virtual void virt_one();

virtual void virt_two();

void norm_one();

void norm_two();

};

class Derived : public Base {

public:

void virt_two(); // override Base function

void norm_two(); // override Base function

void newfunct();

};

When an instance Base is used, either directly or through a pointer, the
presence of the virtual functions has no effect. They are treated as normal
functions and the outcome is the same for both forms of access. Virtual and
non-virtual functions are also treated the same when an instance of Derived is
used through a pointer to Derived, or when it is accessed directly. So, if the
overridden functions norm_two and virt_two are used, the versions declared in
Derived are invoked.

Virtual functions affect the outcome when an instance of Derived is accessed
through a pointer or reference to Base. Then the virtual declarations determine
which functions are actually used. For example,
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Derived d; // derived from Base

Base* pb = &d;

pb->virt_one(); // in Base

pb->virt_two(); // in Derived - overridden in Derived

pb->norm_one(); // in Base

pb->norm_two(); // in Base - overridden in Derived

pb->newfunct(); // error - not a member of Base

Here, an instance of Derived is accessed through a pointer to Base. Only
functions declared in Base can be used with this pointer, so an attempt to use
newfunct is an error. Functions in the derived class can be used if they override
a virtual function in the base class. Thus, when pb->virt_two() is executed,
it is virt_two in Derived that is invoked rather than the function of the same
name in Base. Access with the pointer to the other functions of Base will not
invoke a Derived function: virt_one is virtual but is not overridden; norm_two
is overridden but is not virtual.

The significant effect of the mechanism supporting this behaviour is that
calls to virtual functions are resolved at run-time (late or dynamic binding),
while calls to non-virtual functions are resolved at compile-time (early or static
binding). With the help of virtual functions and pointers, a function in a derived
class can be invoked without knowing exactly what type of object is being
accessed.

A function that overrides a virtual function is itself a virtual function, even
if it is not declared as such. If a virtual function is overridden repeatedly, in
a series of derived classes, the last override is the one used when the function
is called for an instance of the most derived class. A friend function cannot be
declared as a virtual function because it is not a member function and cannot
be overridden in a derived class.

11.4 Virtual function return types

A function override is identified by the name of the function and its parameter
list. The return type can be different for non-virtual functions, but apart from
a specific exception, this is not so for virtual functions. In most cases it is illegal
to override a virtual function in a base class with a function returning a different
type.

The return type can be only be different if the overridden function returns
a pointer or a reference to a base class, and the overriding function returns a
pointer or reference, respectively, to a class derived from this base class. The
derived class being returned must be accessible from the overriding function,
and the override must not violate the constness of the overridden return type.
This access restriction means that the derived class being returned must be
either the same as the overriding function’s class, or it must be a friend of that
function’s class. The returned object is converted to the return type of the
overridden function.

The following generalised example shows how this works:

class B {

public:

void bbb();
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...

};

class D : private B {

friend class Derived;

public:

void ddd();

...

};

class Base {

public:

virtual void vf1();

virtual B* vf2();

virtual Base* vf3();

...

};

class Derived : public Base {

public:

char vf1(); // error - char is not void

D* vf2() // okay

{ ...

return &d; }

Derived* vf3() // okay

{ ...

return this; }

private:

D d;

};

Here, the class Derived attempts to override three virtual functions in its base
class, changing their return type. The first override, to vf1(), is illegal because
the return types are incompatible. The second, to vf2(), is okay because class
D is derived from B, and Derived is a friend of D. Finally, the vf3() override
is in order because it returns a pointer to its own class, which is derived from
Base.

11.5 Constructors and virtual destructors

Constructors cannot be virtual. The exact type of an object must always be
known when it is created, so virtual constructors do not make sense and are
illegal. However, destructors can, and in some cases must, be virtual.

Virtual destructors are needed when new and delete are used with objects
that are accessed through pointers or references to their base class. For example,
if we declare the the following classes:

class Base {

public:

Base(); // default constructor
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...

~Base(); // destructor

};

class Derived : public Base {

public:

Derived(); // default constructor

...

~Derived(); // destructor

};

An instance of Derived can be created with something like this:

Derived derv;

This works without any surprises. Default constructors are called for Base and
Derived. Eventually, the destructors ~Derived() and ~Base() are called when
derv goes out of scope and is destroyed.

An instance of Derived can also be created using new with a pointer to its
base class:

Base* pbase = new Derived;

Again, default constructors for both classes are called. Unfortunately, all is not
well when the object is destroyed with:

delete pbase;

Only the destructor for Base is executed. The destructor for Derived is not
invoked, because pbase is a pointer to Base. This problem is easy to resolve by
making the base class’s destructor a virtual function, like this:

class Base {

public:

...

virtual ~Base();

};

With this in place, the virtual function mechanism will ensure that all destruc-
tors are invoked as expected.

Base classes with virtual functions that have a destructor should always
declare it as virtual. Furthermore, it is good practice to provide a virtual de-
structor in any base class that has virtual functions. This will ensure correct
execution of destructors in any derived classes. If the base class’s implementa-
tion does not need a destructor, an empty definition can be defined. This has
very little overhead when the class is used, and it makes the base class much
safer to use.

Classes without virtual functions do not normally need a virtual destructor,
because it is unlikely that such a class will be dynamically allocated, and then
deleted using a base pointer.

Virtual functions can be used in constructors and destructors. However,
any overriding functions are ignored. The function called is the one in the
constructor’s (or destructor’s) own class, or its bases. This ensures that non-
constructed parts of an object are not accessed. This restriction does not apply
to other member functions. In these, calling a virtual function will invoke the
overriding function in the derived class.
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11.6 Abstract base classes

Sometimes a class is only used to derive other classes. It is never used to create
an instance of itself. Such a class is called an Abstract Base Class.

An abstract base class is a specification of a common interface for a collection
of derived classes. It is usual to specify the functions needed in the derived
classes as virtual functions. In this way, the abstract base class forms the type
base for a class hierarchy that supports polymorphism.

It is often impossible to give useful definitions for virtual functions declared
in an abstract base class, because they should always be overridden in a derived
class. An error response can be provided:

virtual void display()

{ cout << "Shape::display() should be overridden"

<< endl; }

However, a better alternative is available:

virtual void display() = 0;

This is called a pure virtual function. It has no definition, and it must be
overridden in a derived class. A class containing a pure virtual function cannot
be declared as object on its own. It can only be used as an abstract base class.
Pure virtual functions cannot be used in their class’s constructors or destructor.
A derived class must override all pure virtual functions in its base class.

Abstract base classes can be used to design a package that operates on point-
ers or references to class objects. Users of the package derive classes from the
abstract base class, and then use objects of these types with the package. The
abstract base class ensured that the derived classes have the polymorphic be-
haviour needed by the packages components. As an example of an abstract base
class, there is part of a very simplified and simulated object oriented windows
based graphic user interface:

class Window {

public:

virtual void testpress() = 0;

virtual ~Window(){}

};

class Callback {

public:

virtual void doit() = 0;

virtual ~Callback(){}

};

class Button {

public:

Button( Window* window, Callback* acallback )

: thewindow(window), thecallback(acallback){}

void dummypress()

{ click(); }

private:
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Window* thewindow;

Callback* thecallback;

void click()

{ thecallback->doit(); }

};

This example illustrated the use of callback objects to respond to window’s
events. (This approach is much superior to the use of pointers to member
functions.) The general idea is to pass the address of a callback object, derived
from an abstract base class, to the windows object. This callback object can
respond to to a function call issued by the window object when the event occurs.
The virtual function mechanism ensures that the correct function is called. In
effect, we have created a callback type which can be used to make callback
objects to be used by the windows interface.

Looking at the actual example in detail. The class Button manages a visual
button in a window. We will assume that, in normal operation, a mouse is
clicked in the button the executes the click function. This in turn executes the
doit function in a Callback object given to the button when it was created.
The Window class represents an interface feature that can hold buttons.

To complicate the example, there are a few extra functions to simulate the
interface in the absence of any real windows, and button events. The virtual
function testpress in Window is provided so that a dummy button press can be
generated in an application defined window, and dummypress in Button provides
the actual mechanism to do this, by calling click.

The following shows how all of this can be used:

class OKcallback : public Callback{

public:

OKcallback() : count(0) {}

void doit()

{ cout << "PRESSED " << count++ << endl; }

private:

int count;

};

class MyWindow : public Window {

public:

MyWindow() : okay(this,&okcallback) {}

void testpress()

{ okay.dummypress(); }

private:

Button okay;

OKcallback okcallback;

};

void main()

{

Window* mainwindow = new MyWindow;

mainwindow->testpress();

mainwindow->testpress();

mainwindow->testpress();
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delete mainwindow;

}

The class OKcallback is derived from the Callback abstract base class. The
doit function is overridden. It counts the number of times the callback is used
and prints a simple message. The class MyWindow is derived from Window. It
contains an instance of Button called okay. This object is initialised by passing
it the address of the MyWindow using this, and the address of a callback object
of type OKcallback. For the sake of the simulation the testpress function is
overridden to call dummypress in okay.

In main, an instance of MyWindow is created, and accessed through a pointer
to Window, named mainwindow. The function testpress is called. This is a
virtual function in Window, so the overridden function in MyWindow is executed.
This, in turn, calls the Button member function dummypress. This initiates
the normal behaviour of the button, which is to call the doit function in its
callback object, though a pointer to its base class. The function is virtual, so the
overridden function in the user supplied OKcallback object is called as required.

11.7 Exercises

1. Write an simple version of the Shape classes discussed in § 11.2. Provide
support for a square and a rectangle. Do not bother about screen location.
(This simplification allows the exercise to be performed on any terminal,
without knowledge of its graphic or control interface.) Implement display
and rotate functions. For the display function print the shapes as char-
acter patterns. Since this simplified version of Shape ignores location, just
start printing at the start of the current line, and let the screen scroll. The
rotate function should rotate its object clockwise through 90 degrees.

2. Experiment with virtual, pure virtual and non-virtual functions with and
without pointers. Explore the various combinations and their effects. Try
to derived the same results as those discussed earlier in §11.3. There is no
model solution for this exercise.

3. Write a Circle class that has a member function to modify its radius,
and a Rectangle class that can have its width and height modified. They
should both be able to supply area and circumference information. It must
be possible to maintain some form of mixed list of Circle and Rectangle

objects, and to use this list to print the areas of the objects. Use an
abstract base class.
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Templates

12.1 Introduction

A templates is a common definition for a set of classes and functions. Tem-
plates are parameterised, and instances are generated using a supplied set of
arguments. Templates offer a direct way of supporting code reuse. For exam-
ple, separate implementations of a list of integers and a list of strings are not
needed. A template list, parameterised on the type of its contained object, will
do for both. Indeed, template classes are most useful for defining container
classes such as lists and queues.

There are some problems associated with designing and implementing tem-
plates. A compiler can often detect mistakes in a template definition, but some
faults will only be reported when an instance of the template is created. Thus
some errors are not detected until the template is used. These late error mes-
sages can be confusing. Do not assume that a template works until it has been
fully tested with a comprehensive set of arguments.

The syntax of a set of related templates can get very complicated. One
way of approaching the design and implementation of templates is to use a non-
parameterised prototype. Use an ordinary class or function, with no parameters,
to model a specific instance of the template. When this is implemented correctly,
convert it to a fully operational template by substituting parameters. Develop-
ment and testing of the template can then continue with some confidence that
the underlying algorithms and data structures work.

Templates are a currently evolving part of C++. This chapter covers the
features that can be found in some, if not most, compilers at the moment. These
generally comply with the draft ANSI standard, but there are some template
features, defined in the draft standard, that are not discussed in this chapter.

12.2 Class templates

A class template is a parameterised type. Parameters in the template’s definition
are replaced at compile-time to generate instances of the template. Parameters
can be type names or scalar values, but we will start by concentrating on type
parameters.

An array class is a good example of how templates can be used:
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template< class Type >

class Array {

public:

Array( int low, int high );

// subscript in range low to high

// initialise to default constructor of Type

void put( int loc, const Type& value );

// store value in element at loc

Type get( int loc ) const;

// recover value from element at loc

bool inbound( int loc ) const;

// check loc is within bounds for this array

~Array();

private:

Array( Array& ) {}

// restrict copy

Array& operator=( Array& ) { return *this; }

// restrict assignment

Type* store;

int lowbound;

int highbound;

};

Classes that have array like behaviour often overload the [] operator, but in
this case operator overloading has not been used. The Array class has put and
get functions to store and retrieve values from locations in Array. The number
of locations in an instance of an Array are given as a range. The bound member
function can be used to check if a location is within bounds before it is used
with put or get. The copy constructor and assignment operator are restricted
to prevent problems with the pointer to Type used in the implementation. (See
exercises for an alternative.)

The type of values held in Array is parameterised as Type, so an instance
of this class can be generated to hold almost any type of object, provided the
type supports all the operations performed on it by the array. The parameter
is named at the start of the template with:

template< class Type >

The class keyword indicates that the parameter Type is a type name. Any
valid C++ identifier can be used as a parameter name, and there can be more
than one parameter.

Instances of Array are created by giving an actual value for its parameter:

Array<double> costs(3,10);

Array<Stock> bins(1,1000);

...

if ( costs.inbound(item) )

costs.put(item,newcost);

Here, two objects are created from the Array template. The definitions give the
name of the template, followed by an argument list between < and >. In this
case, there is only one argument, which is the type of the objects stored in that



12.2. CLASS TEMPLATES 151

instance of Array. This combination of class name and argument list is the type
of the template object. The instance name and constructor arguments follow as
usual. Once defined, a template class object is used like any other class object.

A template with class parameters is polymorphic, but instances of the tem-
plate are not. When an instance of a template is defined, the types of object it
can work with are fixed. So the two Array objects in the above example have
different types: Array<double> is not the same type as Array<Stock>. Thus
the following function will accept costs but not bins as an argument:

void print( const Array<double>& array );

The member functions of a template class are defined in a similar way to
ordinary class member functions. For example, the put function in the Array

template is defined as follows:

template< class Type >

void Array<Type>::put( int loc, const Type& value )

{

store[loc - lowbound] = value;

}

The function definition is preceded with template< class Type >, so that its
parameters are the same as Array. The function is associated with its class,
like any member function, using the scope operator. The class is a template in
this case, so Array<Type>:: prefixes the function name. When an instance of
the Array template is declared and used, the correct version of the function is
generated. Thus, if we have an instance of type Array<double>, the function
will be:

void Array<double>::put( int loc, const double& value )

The rest of the Array template’s implementation is written in the same way,
and looks like this:

template< class Type >

Array<Type>::Array( int low, int high )

: lowbound(low), highbound(high)

{

store = new Type[highbound - lowbound + 1];

}

template< class Type >

Type Array<Type>::get( int loc ) const

{

return store[loc - lowbound];

}

template< class Type >

bool Array<Type>::inbound( int loc ) const

{

if ( loc >= lowbound && loc <= highbound )

return true;

else

return false;

}



152 CHAPTER 12. TEMPLATES

template< class Type >

Array<Type>::~Array()

{

delete[] store;

}

Apart from the complication of the template, this is a comparatively simple
implementation. A dynamically allocated array is used to store the class’s data,
which is created in the constructor as an array of the type given as the template’s
parameter. This will be automatically initialised using the default constructor
for Type.

We do not know what sort of object will be used with Array, but we are
assuming that it has standard copy semantics. This means it behaves like a fun-
damental type, such a double, when it is declared, used as a function argument
or assigned. Such an object will have a default constructor. It will also have a
copy constructor, a destructor and a standard assignment operator overload if
the memberwise defaults are inappropriate. It should look like this example:

class Probe {

public:

Probe();

Probe( const Probe& );

Probe& operator=( const Probe& p);

~Probe()

...

private:

...

};

The member functions and friends of a template class are the same as those
in a normal class, and can be defined in similar ways. For example, they can be
inline:

template< class Type >

class Array {

public:

void put( int loc, const Type& value )

// store value in element at loc.

{ store[loc - lowbound] = value; }

...

private:

...

};

12.3 Function templates

Templates can be used for functions as well as for classes. They are very simple
to define. For example, the following function swaps two variables of the same
type:

template<class Type>
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void swap( Type& a, Type& b )

{

Type temp = a;

a = b;

b = temp;

}

Here, the template parameter Type is used to declare the function parameters
and a local variable.

A template function is generic, and it will be automatically used by the
compiler when it is appropriate. The compiler does all the work and the func-
tion can be used without effort. So wherever a function called swop with two
arguments of the same type is encountered, the template defined above is used
to generate a suitable function:

Stock i,j;

double x,y

swap(i,j);

swap(x,y);

swap(i,x); // error - does not match template

The selection of function templates is based on their template parameters.
The match is performed on a name basis, and the actual behaviour of the
objects involved is not considered. Thus it is possible to generate a template
function that will not work with the actual objects in its argument list. The
swop template will work with any object that has standard copy semantics, but
consider the following:

template<class Type>

void inquotes( ostream& os, const Type printable )

{

os << '"' << printable << '"' << endl;

}

This template matches all of the following function calls:

inquotes(cout,6); // okay

inquotes(cout,"hello"); // okay

inquotes(cout,Noprint()); // possible error

However, there may be a problem with the last call. This has a class object as
its second argument, and many classes do not have a operator<< overload. If
this is the case for Noprint, then the generated template function cannot work.

Template functions can be overloaded with normal functions. The following
is a slightly different version of the function defined in the inquotes template:

void inquotes( ostream& os, const double printable )

{

os << '^' << printable << '^' << endl;

}

It will be used instead of the template only when the function is called with a
floating point number as its second argument.
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The errors reported for template functions can be confusing. Faults are
only detected in generated functions. Just because a template function works
with a particular set of arguments does not mean it will work with others.
Some compilers even report a fault in a template without indicating where the
generating function call is in the program.

12.4 Template arguments

Template arguments do not have to be type names. Character strings, function
names and constant expressions can all be used. The Array example discussed
above can be recast using template arguments to define is bounds:

template< class Type, int LOW, int HIGH >

class Array {

public:

void put( int loc, const Type& value );

// store value in element at loc.

Type get( int loc ) const;

// recover value from element at loc.

bool inbound( int loc ) const;

// check loc is within bounds for this array

private:

Type store[HIGH - LOW + 1];

};

Notice that the store array is now statically allocated. Its size can be
calculated from template parameters, so there is no need to use a pointer to
Type and the new operator in a constructor. A copy constructor and assignment
operator are not needed because the default memberwise copy semantics are
okay. In use, only object definition is different:

Array<double,3,10> costs;

const int FIRST = -4;

const int LAST = 6;

Array<Stock,FIRST,LAST> bins;

...

if ( costs.inbound(item) )

costs.put(item,newcost);

The member functions of this Array use its integer template parameters as
follows:

template< class Type, int LOW, int HIGH >

void Array<Type,LOW,HIGH>::put( int loc, const Type& value )

{

store[loc - LOW] = value;

}

template< class Type, int LOW, int HIGH >

Type Array<Type,LOW,HIGH>::get( int loc ) const
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{

return store[loc - LOW];

}

template< class Type, int LOW, int HIGH >

bool Array<Type,LOW,HIGH>::inbound( int loc ) const

{

if ( loc >= LOW && loc <= HIGH )

return true;

else

return false;

}

Using template parameters for the bounds of Array means that the class
can be implemented without using dynamics data structures allocated from free
store. However, now the bounds must be known at compile-time, and cannot
be calculated at run-time. The bounds also become part of an Array instance’s
type, restricting some operations:

Array<Stock,1,30> trialstock;

Array<Stock,1,100> finalstock;

Array<Stock,1,30> localstock;

trialstock = localstock; // okay

finalstock = trialstick; // error - not the same type

The design of a template class can often employ either non-type parameters
or a constructor to supply initial conditions for an instance of the class. The
choice depends on the required behaviour of the class. Use template parameters
if the values are constant for the life of an object, and it is acceptable for them
to be part of the object’s type name.

Other sorts of non-type parameter are possible. Functions names can be
used with a template like this:

template< void (*F1)() >

class Demo1 {

public:

void use_it();

};

template< void (*F1)() >

void Demo1<F1>::use_it()

{

F1(); // call template argument

}

Given the function void myfunction(), creating an instance of the above tem-
plate that uses it is simple:

Demo1<myfunction> test1;

test1.use_it(); // this calls myfunction|
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Arrays are a little more troublesome. They are specified using pointer nota-
tion:

template< const char* MESSAGE >

class Demo2 {

public:

void report();

// ...

};

template< const char* MESSAGE >

void Demo2<MESSAGE>::report()

{

cout << "Message is " << MESSAGE << endl;

}

Creating an instance of this template is done as follows:

const char message[] = "A short note";

Demo2<message> test2;

test2.report(); // use message array

Some compilers insist that an array used as a template argument has global
scope.

12.5 Exercises

1. Modify the Array template in §12.2 so that assignment and copy construc-
tors are not restricted.

2. Write an array template that is parameterised by type and size. Give it a
[] subscript operator and bounds checking. It must support multidimen-
sional arrays.

3. Create an array template with bound parameters that is derived from
an abstract base class so that arrays with different bounds can be used
polymorphically.

4. Write a list class template that can store any kind of object. Base it on
the integer List class given in §8.10.



Chapter 13

Advanced Features

13.1 Exception handling

Managing errors can complicate the way we use software components, such as
functions and objects, in a program. Some commonly used approaches for ordi-
nary functions are to return a special value indicating failure of the operation,
or to have an extra status parameter that can be checked to see if the function
worked. These techniques can also be used for the member functions of a class.
However, a better way to manage errors in a class is to have a status that can
be checked with special member functions after an operation is complete. The
<iostream.h> library uses this approach. It has a number of error flags and as-
sociated member functions that can be used to check for errors while inputting
and outputting data. These are discussed in §14.6. We do not expect errors
to occur very often, but it is often best to check for them every time we do
something. This overhead can complicate the structure of our programs, mak-
ing them difficult to understand and maintain. But, if the checks are not made,
and an error does occur, the program may produce invalid results.

Exceptions offer an alternative way to manage fault capture and recovery.
The mechanism is simple. Any function can throw an exception when it dis-
covers an error that prevents further execution. For example, the following
function throws an integer exception with the value zero if it finds an error in
its parameter:

Stock lookup( const string& binname )

{

Stock item;

if ( !Bin::valid(binname) )

throw 0;

// use binname to find item ...

return item;

}

A function immediately terminates when throw is executed. The exception
is caught by putting the function in a try block, which is followed by one or
more handlers. These are catch blocks that have a single parameter defining
what type of exception they can handle:

157
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try {

newstock = lookup("Widgets");

}

catch ( int ecode ) {

cout << "Look up failed with error code "

<< ecode << '.' << endl;

cout << "Processing will continue." << endl;

}

catch( ... ) {

cout << "Unexpected exception encountered."

<< endl;

throw; // rethrow exception

}

// rest of the program

When there is more than one handler, they are tried in order. The first
catch block that has a parameter that matches the thrown exception is executed.
When this handler is finished the program continues with the first statement
after the last catch block. If a match for the exception is not found, the search
continues with the next most recently activated try block. If no match is found
in any of the active try blocks, the program is terminated.

In the example above, the first catch handles all integer exceptions thrown
in the try block. The second handler has ... as its exception declaration. This
special notation indicates that the handler will look after any type of exception.
Some care is needed with a list of handlers. It can be specified in such a way
that a particular handler will never be executed, because the ordering prevents
it from being reached. In particular, if a ... handler is present, it must be last.

If a handler or one of the functions called while it is executing throws an
exception, this will not be managed by the try block that owns the handler. That
try block is finished as soon as the handler is started. Sometimes a handler finds
it cannot manage the exception for which it was invoked. In this case, it can
explicitly reactivate the exception using a throw with no value, as shown in the
last catch block of the example above. Such a reactivated exception is treated
like any other exception, so it is thrown out of the try block.

13.1.1 Exception objects

The previous example used an integer, but an object of almost any type can
be thrown as an exception. Class objects make very good exceptions. They
can contain detailed information about the particular problem that caused the
exception. In addition, inheritance can be used to create a hierarchy of related
exceptions that can be managed polymorphically. This approach is used in
the draft ANSI standard, which uses classes to provide exceptions for things
like bad memory allocation and the standard libraries. When such a standard
exists, it is nice to make application program code compatible with it. So the
standard’s exception classes can be used as a base for families of application
specific exceptions.

The standard exception base class looks something like the following:

class Exception {
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public:

Exception( const char message[] )

{ strncpy(themessage,message,MAXMESS);

themessage[MAXMESS-1] = 0; }

virtual const char* what()

{ return themessage; }

virtual ~Exception() {}

protected:

enum { MAXMESS = 100 };

private:

char themessage[MAXMESS];

};

This uses C strings. There is a proposal, in the draft C++standard, for a string
class, and it is very likely this will be used instead of a C string in the standard
exception class. Nevertheless, the way that our class can be used is much the
same.

As an example, Exception can be the base class for a family of exceptions
associated with a Stock class library:

class Xstock : public Exception {

public:

Xstock()

: Exception("Non-specific stock error") {}

protected:

Xstock( const char message[] )

: Exception(message) {}

};

class Xinvalbin : public Xstock {

public:

Xinvalbin( const char abin[] )

: Xstock("Invalid bin name")

{ strncpy(thebin,abin,MAXBIN);

thebin[MAXBIN-1] = 0; }

const char* bin()

{ return thebin; }

private:

enum { MAXBIN = 32 };

char thebin[MAXBIN];

};

class Xunlist : public Xstock {

public:

Xunlist( int anitem )

: Xstock("Unlisted item"), theitem(anitem)

{ char temp[20];

strcpy(fullmess,Xstock::what());

strcat(fullmess," ");

strcat(fullmess,itoa(theitem,temp,10)); }

const char* what()
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{ return fullmess; }

int item() const

{ return theitem; }

private:

int theitem;

char fullmess[Exception::MAXMESS + 10];

};

The Xstock class is a general exception. It is used to build more specific Stock

exceptions like Xinvalbin and Xunlist. The Xstock constructor, which allows
the what message to be modified, is only available to derived classes. A Xstock

exception can be thrown in its own right, and a constructor is provided for this
purpose. This constructor does not allow the what message to be modified.
Instead, it defines a standard message.

These Xstock exceptions are designed to be used by the member, friend and
supporting functions of a class called Stock. In use, an actual instance of a class
exception must be thrown. This is normally done by specifying a fixed value
with the throw to create a temporary instance of the exception. For example,

throw Xinvalbin(binname);

throw Xstock();

These invoke a constructor to create a temporary instance of the exception
which is passed to its handler. This temporary instance is destroyed when the
handler that processes it has finished.

Handling these exceptions is easy. A suitable try block might look like this:

try{

// some stock processing

}

catch ( Xinvalbin xcptn ){

cout << xcptn.what()

<< " error with bin called "

<< xcptn.bin() << endl;

}

catch ( Xstock& xcptn ){

cout << xcptn.what() << endl;

}

Here, if an Xinvalbin is thrown, it will be picked up by its specific handler.
Any other Xstock exception will be caught by the Xstock& handler. This is
able to print out the particular details of the exception because what is a virtual
function, and the exception is passed as a reference. In contrast, if the handler
accepted a non-referential Xstock, the what function in the base class would
be used, which would give less information. In both cases item cannot be used
because it is not a virtual function.

If the value of an exception is not used, a name does not have to be given:

try {

// do some Stock things

}

catch ( Xstock ) {
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cout << "Unexpected error in stock processing" << endl;

exit(3);

}

13.1.2 Exception management

The availability of exception handlers is dynamic. At any time there may be a
number of active try blocks. These are arranged in a hierarchy with the most
recently entered try block at the lowest level. The search for a handler that
matches an exception travels up this hierarchy. This will cause the program
to prematurely leave active loops, functions and try blocks as it looks for a
suitable handler. Any local declarations that go out of scope during the search
are cleaned-up.

If a destructor invoked during the search for a handler throws an exception,
the search is abandoned and the program is ended. It is generally a good idea
to avoid throwing an exception from a destructor, because this can disrupt
the smooth operation of exception management. Exceptions can be used by
destructors, but they should all be caught and handled within the destructor
function.

The function terminate is called if a match is not found, or if the search is
abandoned. This in turn calls abort, which actually stops the program. Some-
times this simple default behaviour is not suitable, so the terminate function
can be replaced with one of our own design. For example,

#include <except.h>

#include <stdlib.h> // for exit and abort

void managecrash()

{

// termination activities

...

abort(); // or exit(0);

}

void main()

{

terminate_handler oldterm = set_terminate(managecrash);

// managecrash() in effect

...

set_terminate(oldterm); // restore old terminate function

...

}

Here, the replacement for terminate is called managecrash. This is a func-
tion with no parameters that does not return a value. It must not throw an
exception, and it must not return to its caller. It finishes by calling abort,
but exit can be used instead for a nearer to normal program termination.
The managecrash function is installed with set_terminate, which returns the
address of the existing terminate function. This address can be stored in a
variable of type terminate_handler, to be restored later by another call to
set_terminate. In practice, managecrash might close down the program’s file
system, set off an alarm, or just print out a special warning message.
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13.1.3 Restricting exceptions

The type of exceptions that a function is allowed to throw can be controlled
by giving it an exception specification that lists valid exceptions. If this list is
violated, the program is normally terminated.

The list of exceptions is given at the end of a function declaration like this:

void printitem( char binname[], int item )

throw(Xinvalbin,Xunlist)

{

...

}

While this function is executing the only exceptions that can be thrown are
Xinvalbin and Xunlist. Any other exception type will cause the program to
terminate.

When sets of exceptions are derived from a common base class, they can all
be specified by using the base class like this:

void printitem( char binname[], int item ) throw(Xstock)

{

...

}

This is similar to the previous example because Xinvalbin and Xunlist are
derived from Xstock.

If necessary, all exceptions can be prevented with an empty list:

void afunction( int parm ) throw()

When a program is terminated because a function’s exception specification
is violated, the function unexpected is called. This calls terminate which then
calls abort to actually terminate the program. Sometimes this simple default
behaviour is not suitable, so the default functions can be replaced. How to
replace terminate is described in §13.1.2. The unexpected function can be
replaced in a similar way:

#include <except.h>

#include <stdlib.h> // for exit and abort

void manageunexp()

{

// termination activities

...

abort();

}

void main()

{

set_unexpected(manageunexp);

// manageunexp() in effect

...

}
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Like a terminate replacement function, an unexpected function should not
return to its caller. However, it can throw or rethrow an exception. Handlers
for this exception will be looked for starting at the call of the function whose
exception specification was violated. So an unexpected function can be used to
bypass an exception specification.

13.2 Casting

C++ is a typed language. All objects have type, and this information is used at
compile-time to check that everything fits together. The compiler will complain
about an operation that is incorrect for an object of a particular type. This is
called static type checking.

The compiler will implicitly convert the type of objects when appropriate.
For example, this happens when a double is assigned to an int. The types
of the objects involved ensure that a suitable conversion is used. Conversion
operations can also be invoked explicitly by the programmer when the default
behaviour is inappropriate. The standard types, such as char, int or float,
have built-in conversions. Classes are user defined types, and the compiler
includes them in its static type checking system. If suitable constructors and
conversion operators are defined, they will be implicitly invoked just like the
standard type conversions. Inheritance can be used to create subtypes, which
can be polymorphic if virtual functions are declared in the base class. Virtual
functions involve dynamic type checking. This allows a C++ program to decide
on the type of a class object at run-time.

Type checking is a very important feature of C++. In its static form, it helps
prevent faults that can be very difficult to find at run-time. Some programmers
find statically typed languages restrictive, but many others find the type warning
and error messages generated by strongly typed languages extremely useful.
Nevertheless, the basic type checking system can sometimes get in the way, and
programmers need a method of modifying or overriding its operation. Casts are
the way to do this in C++.

Casting should be treated with great care. It can be very useful in specific
cases, but it always carries some risk. If we bypass the strict type rules, we
must accept responsibility for the consequences. Casts can be used for a num-
ber of things, some safer than others. They can perform conversions, navigate a
class hierarchy (statically or dynamically), modify constness, manipulate point-
ers, and reinterpret storage formats. C++ offers four different sorts of cast to
manage all of this:

static cast A reasonably well behaved cast. Used for conversions and static
class navigation.

dynamic cast Used for dynamic class navigation.

const cast Used for casting away constness (and volatility). This can be dan-
gerous.

reinterpret cast Used for values that must be cast back to be used safely.
This cast can seriously damage the health of your programs.
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All of these casts have a similar syntax. For example, if the object being
cast is anobject and the required type is Atype, we might use:

static_cast<Atype>(anobject)

The resulting object has the type Atype, and the whole cast expression can be
used wherever a object of that type can be used.

C++ cast operations are complicated. Any programmer intending to use
them must understand how they work. So the following sections explain their
operation in detail.

13.2.1 Static casts

Anything that can be converted can be statically cast. So one way to get a
floating point result from an integer divide is:

int a, b;

...

double x = a / static_cast<double>(b);

This is okay because there is a standard conversion between int and double.
However, there is no conversion between a pointer to int and a pointer to
double, so:

double x;

int a, b;

int* pint = &b;

...

x = a / *static_cast<double*>(pint); // is an error

x = a / static_cast<double>(*pint); // but this is okay

Preventing casts between pointers to unrelated types is sensible. Casting
such a pointer would not convert the format of the target object. So it would
be possible, for example, to treat the bit pattern of an int as a double. This
is not safe, and static_cast prevents it.

There is no need to explicitly cast from an enumerated type to an integer.
However, assigning an int to an enumerated type can cause a warning or er-
ror message. Enumerated types can be statically cast, but there is no bound
checking. For example,

enum Colour { RED, BLUE, GREEN };

Colour paint = RED;

...

int a = paint; // okay

paint = 1; // warning or error

paint = static_cast<Colour>(1); // okay

paint = static_cast<Colour>(33); // okay but woops!!

Of course, in all the above examples, static_cast can be replaced with
suitable conversions:

double x = a / double(b);

Colour paint = Colour(1);
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It is a matter of style. Use the notation you like best.
A more powerful use of static_cast is class navigation. We can cast be-

tween pointers or references to instances of classes that are directly or indirectly
related by inheritance. So a pointer to a base class can be converted into a
pointer to one of its derived classes. Conversion can be in either direction: from
base to derived, or from derived to base, and it can skip levels in the inheritance
hierarchy. Consider the following simple classes:

class Vehicle {

public:

float enginesize();

...

};

class Car : public Vehicle {

public:

int colourcode();

...

};

The class Car is derived from Vehicle, but Vehicle has no virtual functions.
So if a Car object is accessed though a pointer to Vehicle, its colourcode

member function cannot be used. This problem can be bypassed with a cast,
which is allowed because Car is derived from Vehicle:

Car acar;

Vehicle* vhclpntr = &acar;

...

vhclpntr->enginesize(); // okay

vhclpntr->colour(); // error - not virtual

static_cast<Car*>(vhclpntr)->colourcode(); // okay

There are some general restrictions: the classes involved must be completely
defined; a conversion from the derived class to the base class must be possible,
and the base class must not be virtual. Casts between pointers and references
cannot be mixed. A reference cast is the only cast that can be used on the
left-hand side of an assignment statement.

We can also cast from a pointer (or reference) to a base class into a pointer
(or reference) to a derived class, but only if the base class is accessible from the
derived class. This is the same as the automatic conversion which occurs when
a pointer to a derived class is assigned to a pointer to a related base class.

Do not confuse casting pointers and references to classes, with casting actual
class objects. A derived class object can be cast to one of its base classes. This
is just a standard conversion that extracts the base class sub-object from the
derived class. A base class normally cannot be cast to a derived class. This can
only be done if a suitable constructor or conversion operator has been defined.

Static casting is not entirely safe, it can be fooled. A cast from a pointer
to a base class into a pointer to a derived class is allowed if the inheritance
relationship between the classes is correct. This is true, regardless of the actual
objects involved. As an example, consider the following class which, like Car, is
derived from Vehicle:
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class Bus : public Vehicle {

public:

int seats();

...

};

Instances of Bus and Car can both be accessed with a pointer to Vehicle. So
the following is possible:

Bus bus;

Vehicle* p2Vehicle = &bus;

// This is okay

Bus* p2Bus = static_cast<Bus*>(p2Vehicle);

// The compiler lets this through but its an error!!

Car* p2Car = static_cast<Car*>(p2Vehicle);

The pointer p2Bus in this example can be used safely, but any use of p2Car

will produce undefined results because it it not really pointing at an instance of
Car. It is clear that a static cast should only be used if we are absolutely sure
of an object’s type. However, this particular problem can be overcome by using
a dynamic cast, which is discussed later in this chapter.

13.2.2 Const casts

The C++ type checking system maintains the integrity of constant objects.
This is important, because changing the value of a constant will normally have
disastrous consequences. The other C++ casts cannot change the constness of
an object. It would be too easy to make a mistake if this was possible. However,
since casting away constness is sometimes necessary, C++ has const_cast. This
can be used to add or remove the const (or volatile) modifier from a type.
But the effect of writing to an constant object that has its constness cast away
is undefined. So we can cast away constness from an object but we must still
treat it as a constant. If we accidentally write to such an object, it will not be
reported as an error because we have overridden type checking.

A const_cast can only be applied to pointers and references, and the type
being cast to must be identical to the original apart from constness. The nota-
tion is simple:

const int MAXWHEELS = 4;

...

int& iref = const_cast<int&>(MAXWHEELS);

int* ipnt = const_cast<int*>(&MAXWHEELS);

int ival = const_cast<int>(MAXWHEELS);

// error - can only cast pointers or references

A const_cast can also be used to add constness, although in most cases this
will not make any difference:

const int* cipnt1 = const_cast<const int*>(&age);

const int* cipnt2 = &age; // same as above
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Constant casts can be useful with legacy systems. C typing rules are more
easy-going than C++ rules. So using a C function from C++ can cause prob-
lems. For example,

extern "C" char* strchr( char* p, char c );

inline const char* strchr(const char* p, char c )

{

return strchr(const_cast<char*>(p),c);

}

The first line tells the compiler there is a C function called strchr that is in an
external library. The inline C++ function, of the same name, is a wrapper for
this, giving stronger C++ type behaviour. The constness of the C++ argument
has to be cast away to pass it to the C function. This is safe because we know
the behaviour of the C function.

Much thought is needed before the constant nature of an object is ignored
with a cast. Casts should never be used casually, but there must be a specially
good reason for using const_cast.

13.2.3 Reinterpret casts

The reinterpret_cast is the most dangerous C++ cast. It basically instructs
the compiler to ignore the internal storage format of an object. It does not
perform any conversions. The result of a reinterpret_cast is machine and
compiler dependent. The only safe thing to do with an reinterpret_cast

object is to cast it back to its original type. This cast can only be applied to
pointers and references. The notation is similar to const_cast:

double real = 12.34, *p2real = &real;

...

int& iref = reinterpret_cast<int&>(real);

int* ipnt = reinterpret_cast<int*>(p2real);

Pointers can be converted to and from integers:

double* absptr = reinterpret_cast<double*>(24);

int pointervalue = reinterpret_cast<int>(p2real);

There are a few limitations. For example the following will generate errors:

int ival = reinterpret_cast<int>(real);

// error - cannot cast from double to int

double* dpntr = reinterpret_cast<double*>(2.4);

// error - cannot cast a double to a pointer

double dval = reinterpret_cast<double>(p2real);

// error - cannot cast a pointer to double

As an example of how a reinterpret_cast might be legitimately used,
consider the following function designed for use with C:

void setcallback( Widget* w, void (*cbfunct)(void*),

void* cbdata );
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This sort of function might be found in a graphical user interface such as Xwin-
dows. Its purpose is to register a function as a callback for a component in a
window. For example, if the Widget is a button, the function cbfunct will be
called with cbdata as its parameter when the button is clicked by the mouse
pointer. A void* type is used for cbdata so that anything can be specified as
callback data. This is clumsy, but it is the kind of thing that is often done.

The setcallback function can be used like this, where the callback function
cbokay is attached to okaybutton:

const int OKAY = 1;

const int CANCEL = 2;

void cbokay( void* cbdata )

{

switch ( *reinterpret_cast<int*>(cbdata) ) {

case OKAY :

// Do okay button pressed processing

break;

case CANCEL :

// Do cancel button pressed processing

break;

}

}

void main()

{

Widget okaybutton;

...

setcallback(&okaybutton,cbokay,

reinterpret_cast<void*>(const_cast<int*>(&OKAY)));

...

}

The callback data causes some problems. We cannot pass a constant integer
directly to a void* parameter. First the address of OKAY has its constness cast
away. Then it is cast to void*, which can be used for setcallback without
complaint. In the callback function cbokay, the argument is cast back to int*,
and the result is dereferenced to access the actual value. This is complicated
but it works. The cbokay function must be carefully written. It must cast back
its parameter to int*, and it must respect the parameter’s actual constness.

13.2.4 Dynamic casts

Dynamic casts are used to navigate a class hierarchy. In this, they are similar to
static casts. However, dynamic_cast checks if the cast is correct at run-time. It
does not rely on static type information. Dynamic casts only work with pointers
and references to class types.

The following function uses dynamic_cast to make sure its processing is
being applied to the correct type of Vehicle:

void statistics( const Vehicle* p2vhcl )
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{

Bus* p2bus = dynamic_cast<Bus*>(p2vhcl);

if ( p2bus != 0 ) { // zero if cast fails

// do Bus processing with valid pointer value

...

}

...

}

The dynamic_cast in this function cannot be fooled in the same way as a
static_cast. The function can be called with a Car or a Bus object, and it
will handle both correctly:

Car acar;

Bus abus;

...

statistics(&abus);

statistics(&acar); // NO Bus processing

If statistics is called with a Car argument, the cast to Bus* fails. When
this happens the cast returns a null pointer, so the failure can be detected and
appropriate action taken. Some dynamic cast errors are reported at compile
time by some compilers, but this should not be relied on. Always check the
return from the cast, and do not use it if zero.

The above example casts from base to derived pointer. It is also possible to
dynamically cast pointers and references in the other direction. So a pointer to
a derived class can be dynamically cast to a pointer to one of its base classes.
A pointer or reference to the unique base class sub-object will be returned.

It is normally much neater to use reference parameters for functions. These
can be managed in a similar way to pointers, but detecting a bad dynamic cast
is different:

#include <typeinfo.h>

...

void update( Vehicle& vhcl )

{

Bus abus;

try {

abus = dynamic_cast<Bus&>(vhcl);

// cast worked - okay to use abus.

...

}

catch( bad_cast ) {

// handle cast failure.

...

}

}

A dynamic reference cast throws a bad_cast exception when it fails. If this
exception is not caught, the program will be terminated.

There are a few requirements for dynamic_cast to work. As described above,
it can only be used with pointers and references, to cast between classes related
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by inheritance. Futhermore, if the cast is from base class to derived class, the
base class must contain a least one virtual function. A virtual function is not
needed if the cast is from derived to base class. A dummy virtual function can
be defined in a base class to enable dynamic casting:

class Vehicle {

...

private:

virtual void vf(){} // dummy does nothing

...

};

Dynamic casts are safer than the equivalent static casts provided that, for
pointer casts, the returned pointer is checked. However, dynamic casts need
base classes with virtual functions, and there is some run-time overhead.

13.2.5 C casts

C style casts are supported by C++ for compatibility. They look like this, with
the target type in braces:

(double)anint;

(int*)pntr2double;

Their behaviour is a combination of static and reinterpret casting. They are
entirely unsafe and should be avoided. If a cast has to be used, always use a
C++ cast.

13.3 Run-time type information

C++ supports limited run-time type information. This facility is normally re-
ferred to as RTTI. The mechanism is simple. There is a typeid operator that
can be applied to any object or type. It returns a constant type_info object
that contains type information. The type_info class looks like this:

class type_info {

public:

const char* name() const;

// name of type

int operator==( const type_info& ) const;

int operator!=( const type_info& ) const;

// comparison

int before( const type_info& ) const;

// ordering

virtual ~type_info();

// it's polymorphic

private:

// cannot be used ...

type_info(const type_info& ){};

type_info& operator=( const type_info& ){return *this;};

};



13.3. RUN-TIME TYPE INFORMATION 171

The following prints the type of the object addressed by a pointer to a
polymorphic base class:

Vehicle* p2vhcl;

...

cout << typeid(*p2vhcl).name();

The base class Vehicle and its derived classes, Car and Bus, are defined earlier
in this chapter. The pointer p2vhcl can point to a Car, Bus or Vehicle object.
The type of the one it actually points to when the typeid operation is performed
is printed.

If the typeid argument is a reference or a dereferenced pointer to a poly-
morphic type, the dynamic type of the actual object referenced or pointed to is
returned. A polymorphic type is any class that has at least one virtual function.
If the argument is non-polymorphic, typeid returns a type_info object that
represents the static type. If a dereferenced pointer is used as the argument,
and it is zero, a bad_typeid exception is thrown. The typeid operator works
with the standard data types as well as user-defined types.

Other member functions of type_info are the operators == and !=, which
can be used to compare two type_info objects. The function before orders
type_info objects, but the ordering is implementation dependent The copy
constructor and assignment operator are private, so a copy of a type_info

object cannot be made.
Here is a simple example of RTTI being used with dynamic casting. Notice

typeid is used, with both object and class arguments, to check the type of an
object before the dynamic cast is applied:

#include <typeinfo.h>

...

void update( Vehicle& vhcl )

{

Bus abus;

if ( typeid(vhcl) == typeid(Bus) ) {

abus = dynamic_cast<Bus&>(vhcl);

// do Bus processing

}

else {

// non-Bus processing

}

...

}

In general, designs based on explicit RTTI should be avoided. If functions
need to respond to run-time type information, this can be supported by design-
ing a polymorphic class hierarchy using virtual functions. If RTTI its going to
be used for building a generic class or function, use a template instead. Program
designs based on polymorphic classes and templates cope with program evolu-
tion much better than those based on RTTI. The use of RTTI can encourage a
poor switch on type style that ignores some of the more powerful and resilient
features of C++. It can appeal to inexperienced C++ programmers because it
avoids some initially complicated parts of the language.
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On the positive side, designs that incorporate legacy systems can often ben-
efit from RTTI. Sometimes it is difficult to extend or modify the design of an
existing library to make it polymorphic. In such cases RTTI can be used to
create effective wrappers for the old software. The C++ RTTI method provides
a common standard for library developers who need to incorporate some form
of run-time type information facility in their products. RTTI can be useful for
debugging instrumentation, with messages that contain run-time correct type
information can be helpful.

13.4 Namespaces

Name spaces are a way of preventing name clashes in larger programs composed
from a number of components. Named items such as functions, classes and
objects are put into distinct namespaces. The name of the namespace is used
to qualify the name of the item to make it unique in the program. A namespace
definition looks like this:

namespace Release1 {

class Vehicle {

...

};

...

void print( Vehicle& vhcl );

}

The names in a namespace will not collide with global names or names in any
other namespaces. Names within a namespace behave like global names, but
their scope is restricted to the namespace.

The members of a namespace can be defined within the name space:

namespace Release1 {

...

void print( Vehicle& vhcl )

{ cout << vhcl; }

}

Or, they can be defined outside their namespace by explicit qualification:

void Release1::print( Vehicle& vhcl )

{

cout << vhcl;

}

The definition and its associated namespace must both be in the same enclosing
name space, which in the above case is the global namespace.

There are three ways of accessing names in namespaces. A qualified name
can be used to access an item in a namespace:

Release1::Vehicle rented;

Release1::print(rented);

Or a using declaration can be used to allow a single name to used unqualified:
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using Release1::Vehicle;

Vehicle rented;

Release1::print(rented);

Or a using directive can be used to make all of the names in a namespace
available for unqualified access:

using namespace Release1;

Vehicle rented;

print(rented);

The result of employing using declarations and directives is slightly different.
A using declaration introduces a synonym for the qualified name into the local
scope. This means that the semantics of a using declaration are the same as for
a local declaration. It hides any global declarations with the same name, and
an error will be reported if its name conflicts with another local declaration,

A using directive makes the all the namespace names accessible. They
behave like global names. They are hidden by local names, and an error is
reported if they are the same as any global names. Where there are name
clashes, a qualifier can be used to remove ambiguity. Global is, in effect, just
another namespace. So ::x means x in the global namespace. The following
example shows these differences in action:

namespace A {

int a, b, c;

}

int c; // c is in global namespace

void demo1()

{

int a = 0;

using namespace A;

a = 3; // local a

b = 4; // b in A

c = 5; // error - ambiguity, is c global or in A?

::c = 5; // global c

A::c = 5; // c in A

}

void demo2()

{

int a = 0;

using A::a; // error - clash with local a

using A::b;

using A::c; // hides global c

a = 3;

b = 4; // b in A

c = 5; // c in A

}



174 CHAPTER 13. ADVANCED FEATURES

Alternative names can be declared for a namespace, or a class. These are
called aliases. For example,

namespace University_of_Northumbria_at_Newcastle {

...

}

namespace UNN = University_of_Northumbria_at_Newcastle;

// duplicates are allowed ...

namespace UNN = University_of_Northumbria_at_Newcastle;

namespace UNN = UNN;

Nested namespaces are allowed. The scope rules are illustrated in the fol-
lowing example:

namespace Outer {

int a;

namespace Inner {

void f1( int i )

{ a = i; // Outer::a }

int a;

void f1( int i )

{ a = i; // Inner::a }

}

}

The usual function overloading rules apply to namespaces, and overloading
can occur across namespaces. Namespaces are open, so they can can be dis-
tributed over several header and source files. For example, the namespace A is
in two parts:

// in header file a.h

namespace A {

void f( int i );

}

...

// in source file a.cxx

#include "a.h"

namespace A {

void f( int i )

{

...

}

}

Classes are a kind of namespace, and using declarations can be employed
to remove ambiguity caused by name clashes with base class members.

class Base {

public:

void fa( int i );

void fb( int i );
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};

class Derived : public Base {

public:

using Base::fa;

void fa( int i )

{ fa(i); } // calls Base::fa(int)

void fb( int i )

{ fb(i); } // recursively calls Derived::fb(int)

};

Unnamed namespaces can be used to restrict the visibility of items to a
particular compilation unit, which can be a header or a source file. An unnamed
namespace is just like any other namespace except its name does not have to
be used:

namespace { ... }

This is equivalent to:

namespace uniquename { ... }

using namespace uniquename;

Every unnamed namespace in a single scope shares the same unique but hidden
name. In particular, all the global unnamed namespaces in a compilation unit
are part of the same namespace, and this is different from unnamed namespaces
in other compilation units.

The method of restricting visibility in C is to declare specific items as static.
Although this is still possible, unnamed namespaces should be used instead. In
C++ the static keyword should only be used to mean static allocation (see
§8.5).

13.5 Exercises

1. Write a template for a bound array class. It should throw an exception if
an array instance is accessed with a subscript that is out of range. This
can be based on the solution to exercise 12.2, which is an array template
parameterised by type and size.

2. The class Store holds pointers to objects derived from Storable:

class Store {

public:

Store();

add( Storable* s )

// add pointer to Store

void top()

// set current to first Storable item

Storable* current()

// return pointer to current Storable item

void next()
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// set current to next

bool end()

// no more Storable items

...

private:

...

};

The definition of Storable allows the price of an object derived from this
class to be accessed polymorphically:

class Storable {

public:

virtual double price() = 0;

};

However, the other parts of an object derived from Storable cannot be
accessed by a pointer returned from an instance of Store. Show how
casting can be used to do this as safely as possible.

3. Casting can seriously damage the health of a program. Show how the
misuse of casting can produce incorrect results.



Chapter 14

More Input and Output

14.1 The standard streams

There are four standard stream objects: cin, cout, cerr and clog. Extracting
from cin reads from the standard input stream, and inserting to cout writes to
the standard output stream. Inserting to cerr or clog writes to the standard er-
ror stream. The cerr stream should be used for debugging and error messages,
and the clog stream is better for large amounts of data such as trace infor-
mation. These stream objects are supported by the header file <iostream.h>,
which defines three important classes: istream, ostream and ios. The istream
class is for input and ostream is for output. The ios class defines lots of con-
stants that are used to configure input and output operations.

The << operator inserts data into an output stream, and >> extracts data
from an input stream. Versions of these, for the fundamental types, are supplied
with <iostream.h>. These can be overloaded to provide a similar service for
any class (see §9.2.9). Here is an example of how they can be used with cin

and cout:

#include <iostream.h>

#include <string>

#include <ctype.h> // for toupper

void main()

{

char choice;

string code;

int amount;

do {

cout << "Options:" << endl

<< " a - Add" << endl

<< " b - Delete" << endl

<< "Choose: ";

cin >> choice;

choice = toupper(choice); // convert to uppercase

} while ( choice != 'A' && choice != 'B' );

177
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bool okay = false;

switch ( choice ) {

case 'A':
cout << "Give new stock code: ";

cin >> code;

cout << "Give new amount: ";

while ( !okay ) {

cin >> amount;

if ( amount < 0 )

cout << "Amount cannot be negative" << endl

<< "Please reenter: ";

else

okay = true;

}

break;

case 'B':
cout << "Give stock code to delete: ";

cin >> code;

amount = 0;

break;

}

... rest of program

}

This program prompts the user for information from the keyboard. It displays
a simple menu and waits for a response. The reply is stored in choice. It is
converted to upper case by the function toupper from <ctype.h>, before being
used to control the rest of the input operation. Some checking is performed to
ensure the input data are valid. The results are stored in the variables choice,
code and amount.

The streams cin and cout are tied, so the output buffer is flushed to the
screen before input begins. This ensures that the prompt message appears
before the program waits for the answer.

14.2 Setting flags and parameters

A number of functions are provided in <iostream.h> for modifying the flags and
parameters that control the behaviour of input and output streams. Parameters
are managed with the following functions:

• width For output this sets the width of the print field. When inputting
strings this sets the maximum number of characters read to width - 1.
This is transient and only applies to the next I/O operation.

• fill Specifies the pad character.

• precision If the ios::scientific or ios::fixed flags are set, this
specifies the number of digits to the right of the point. Otherwise, it
specifies the total number of digits displayed. It only affects the format of
floating-point numbers.
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These are stream member functions, and they are easy to use. For example, the
following will print 00123.46:

cout.fill('0');
cout.width(8);

cout.precision(2);

cout << 123.456;

The use of width affects only the next insertion or extraction operation. After
this, the width reverts to the default value.

Field Flags Use

ios::adjustfield field adjustment bit field
ios::left pad after value
ios::right pad after value
ios::internal pad after value

ios::basefield integer base field
ios::dec decimal
ios::oct octal
ios::hex hexicecimal

ios::floatfiled floating point notation bitfield
ios::scientific d.ddddEdd
ios::fixed ddd.d

ios::boolalpa insert and extract bool type in

alphabetic format
ios::showbase show interger base
ios::showpos explicit + for positive integers
ios::unitbuf flush output after each output

operation
ios::uppercase E and X rather than e and x,

and uppercase hex characters
ios::skipws skip whitespace on input

In each of the named bit fields only one flag can be set. Default
is ios::skipws and ios::dec set with all other flags clear

Table 14.1: Format state flags

Other attributes of a stream can be modified by setting ios flags with the
flag function. This is a little more complicated than setting a parameter.
Table 14.1 gives a list of some of the most useful flags. A flag argument is
built by ORing these flags, so if we wanted to print in hexadecimal, aligned to
the left, we would use the argument ios::hex|ios::left. Some examples are:

cout.flags(ios::hex | ios::left);

cout.flags(ios::dec);

const long my_options = ios::left | ios::fixed;

long old_options = cout.flags(my_options);

The flags function sets the specified flags and clears all the others. The
functions setf() and unsetf() can be used instead of flags(). They only
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modify the flags specified in their argument. The setf() function sets flags and
unsetf() clears them. There is a two-argument version of setf() for setting
flags in named bit fields:

cout.setf(ios::hex, ios::basefield);

This sets the ios::hex flag and clears all the other flags in ios::basefield.
All the flags not in ios::basefield are unchanged. Table 14.1 gives the bit
fields and their related flags. If the first argument is zero, all the flags in the
field are cleared. So to reset output to its default state we would use:

cout.setf(0,ios::floatfield);

All these parameter and flag setting functions return the relevant state before
it is changed. The flag, setf and unsetf return the full state of all the flags.
The following function calls get their relevant states without modification:

char c = cout.fill();

int p = cout.precision();

int w = cout.width();

\verb|long f = cout.flag();

The stored values can be used to restore the state later by specifying them as
arguments in the relevant function.

14.3 Manipulators

Manipulators can be used with << and >> operators to modify a stream’s flags,
parameters and state. The most commonly used manipulator is endl, which
inserts a line break:

cout << "this is one line" << endl;

Manipulator Use Stream

dec use decimal notation input or output
hex use hexadecimal notation input or output
oct use octal notation input or output
boolalph use alphabetic format for

bool type
input or output

noboolalph do not use alphabetic for-
mat for bool type

input or output

endl add \n and flush output only
ends add \0 and flush output only
flush flush oputput stream output only
ws eat white space input only

Table 14.2: Manipulators with No Arguments

There are many other useful manipulators. Table 14.2 shows some manipu-
lators with no arguments, like endl, and table 14.3 shows some single-argument
manipulators. The header file <iomanip.h> must be included when manipula-
tors with arguments are used. Manipulators do not return the current state of
the flags or parameters they modify. They are used like this:
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Manipulator Equivalent member function

setiosflags(ios::fmtflags) setf(ios::fmtflags)

resetiosflags(ios::fmtflags) unsetf(ios::fmtflags)

setfill(char) fill(char)

setw(int) width(int)

setprecision(int) precision(int)

Table 14.3: Manipulators with One Argument

#include <iomanip.h>

...

cout << setwidth(10) << 13 << endl;

cout << hex << setw(10) << 13 << endl;

cout << dec << setiosflags(ios::left) << 13 << endl;

cout << setw(10) << hex << 13 << endl;

As a more comprehensive example, the following program uses a combina-
tion of parameters, flags and manipulators to print out a formatted table of
information:

#include <iostream.h>

#include <iomanip.h>

#include <math.h>

const int MAXSTEPS = 8;

const double START = 0.0;

const double STEP = 1.25;

void main()

{

const int COLw1 = 4;

const int COLw2 = 10;

const int COLw3 = 13;

const int COLw4 = 13;

const int COLw5 = 10;

double seed = START;

cout << setw(COLw1) << "seed"

<< setw(COLw2) << "seconds"

<< setw(COLw3) << "minutes"

<< " " << setw(COLw4) << "hours"

<< setw(COLw5) << "days" << endl;

for ( int steps = 0; steps < MAXSTEPS; steps++ ) {

double secs = pow(10,seed);

double mins = secs / 60;

double hours = mins / 60;

double days = hours / 24;

long fsave = cout.flags();
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cout << setw(COLw1) << seed;

cout.setf(ios::scientific);

cout.precision(1);

cout << setw(COLw2) << secs;

cout.setf(ios::fixed);

cout.precision(2);

cout << setw(COLw3) << mins;

cout.fill('0');
cout << " " << setw(COLw4) << hours;

cout.fill(' ');
cout << setw(COLw5) << days;

cout << endl;

cout.flags(fsave);

seed += STEP;

}

}
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This program produces the following output:

seed seconds minutes hours days

0 1.0e+00 0.02 0000000000.00 0.00

1.2 1.8e+01 0.30 0000000000.00 0.00

2.5 3.2e+02 5.27 0000000000.09 0.00

3.8 5.6e+03 93.72 0000000001.56 0.07

5 1.0e+05 1666.67 0000000027.78 1.16

6.2 1.8e+06 29637.99 0000000493.97 20.58

7.5 3.2e+07 527046.28 0000008784.10 366.00

8.8 5.6e+08 9372355.42 0000156205.92 6508.58

14.4 Unformatted input and output

Unformatted input is possible using get functions:

int get()

Returns one character from an input stream as value of function, or EOF

on end of file. The return type of int is needed to accommodate the end
of file indicator.

istream& get( char& c )

Extracts a single character from the input stream and stores it in c.

istream& getline( char p[], int n, char t = '\n' )

Get a line of at most n − 1 characters from the input stream and place
them in the buffer p. The end of line character is not put in the buffer.
The character \0 is added to the end of the input to form a C string.
By default, as given by t = '\n', input stops at end of line, but another
character can be used to delimit input. The stream failbit is set if the
buffer fills before delimiter is read, or if the buffer ends up empty.

These are used with an input stream:

char c;

cin.get(c);

c = cin.get();

char buff[100];

cin.getline(buff,100);

Unformatted output is performed with the put member function:

int put( char c )

Inserts the single character in c into the output stream, and returns EOF

if the insertion fails for any reason.

This might be used, with get as follows:

int c;

while ( (c = cin.get()) != EOF )

cout.put(c);

Here, characters are extracted from cin in the condition part of the while

statement and stored in the variable c. The characters are then written to cout

in the body of the loop. At end of file, get will return the value EOF, and this
is used to control loop termination.
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14.5 Other useful functions

There is an input stream member function which is useful when an error occurs:

istream& ignore( int n = 1, int delim = EOF )

Stops after discarding n characters, or on a character that matches delim.
If n is set to INT_MAX, which is defined in <limits.h>, it is effectively
infinite.

An example of how this function can be used is given in §14.6.
There is also an input stream member function called putback that returns

a character to the input stream, which can sometime help when interpreting, or
parsing, complicated input:

// do nothing !!

cin.get(c);

cin.putback(c);

However, this can only be done once after a character is extracted.
The header file <ctype.h> contains some functions that are useful for pro-

cessing input. For example, the function isprint takes a single character as its
input argument, and returns true if it is printable:

char ans;

...

if ( isprint(ans) )

cout << "The answer is " << ans << endl;

14.6 Detecting end of file and errors

Manipulator Equivalent member function

bool good() The last operation succeded. The next

operation might succeed.
bool eof() An input operation reached the end of

an input sequence.
bool fail() Some kind od formating error occured,

and the next operation will fail unless
the error is corrected. Or, the stream is
corrupted.

bool bad() The stream is corrupted. Data might
be lost

Table 14.4: End of File and Error Detection Functions

The error state of a stream can be examined with the functions given in
table 14.4. If good() is true, the previous operation was successful and we can
expect the next operation to succeed. The function eof returns true when an
input operation reaches the end of an input sequence. For an input file this
happens when its end is reached. If fail() is true, then either the stream is
corrupted, or there has been some sort of format error on input or output. The
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function bad can be used to distinguish between these two possibilities. If it
returns true, then the stream is corrupt. This may appear complicated, but
in practice it is very simple. Table 14.5 shows the possible error states when
these functions return true, and the following summarises possible tests and
responses:

cin.get(c);

while ( cin.good() ) {

// process c

cin.get(c);

}

if ( cin.eof() ) {

// Normal termination

}

else

if ( cin.bad() ) {

// Fatal error message

}

else {

// Attempt to recover

}

Function State
returning true eof fail bad

good() no no no
eof() yes - -
fail() - yes no

- no yes
- yes yes

bad() - - yes

Table 14.5: Error states

Stream failure is commonly caused by a user entering the wrong type of
data during formatted input. For example, entering abc when the following is
executed will cause a stream failure:

int ivalue;

cin >> ivalue;

After a failure occurs the stream is unusable. The behaviour of a program
attempting to extract more data from such a stream is unpredictable. To correct
the failure, so that the stream can be used again, the stream error state must be
reset, and the offending data must be removed from the stream’s buffer. Calling
the function clear() with no arguments resets the error state. This function
can also be used to individually clear the bits ios::eofbit, ios::failbit and
ios::badbit, like this:

cin.clear(ios::badbit|ios::fail);

The buffer is cleared to the next end of line with:



186 CHAPTER 14. MORE INPUT AND OUTPUT

cin.ignore(INT_MAX,'\n');

The following program, which get four integers from the keyboard, shows
how input stream failure can be handled:

#include <iostream.h>

#include <limits.h>

void main()

{

const int NUMVALS = 4;

int value[NUMVALS];

int count;

cout << "enter " << NUMVALS << " integers: ";

bool done;

do {

done = true;

for ( count = 0; count < NUMVALS; count++ ) {

cin >> value[count];

if ( cin.fail() ) {

cin.clear();

cin.ignore(INT_MAX,'\n');
cout << "Invalid data," << endl

<< "please try again: ";

done = false;

break;

}

}

} while ( !done );

... rest of the program

}

After each integer is extracted, the fail state is checked. If an error occurs,
the state is reset and the stream cleared. An error message is printed, and the
inner data entry loop is immediately stopped with a break statement. Input
processing stops when done is true, which is only the case when all four integers
are successfully extracted from cin without error, otherwise all four values have
to be input again.

14.7 Named files

Named files can be used as well as the standard streams. The classes that
support this are defined in the header file <fstream.h>. There are three im-
portant classes ifstream, ofstream and fstream. The ios class contains some
constants that are relevant to files.

To use a named file, an instance of a file object must be defined, and it must
be opened with a valid name. To open a file we provide a name and a file mode.
Possible file modes are given in table 14.6 Files opened in modes ios::out and
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Flag Purpose

ios::in open for input
ios::out open for output
ios::app seek to end of file before each write
ios::ate open and immediately seek to end of file
ios::trunc truncate an existing file when opening it
ios::binary open file in binary mode

Table 14.6: File Modes

ios::app will be created if they do not exist. Modes can be combined using the
bitwise OR operator. For example, ios::out | ios::in | ios::ate specifies
an input output file that should retain existing data.

A file can be opened in binary mode as opposed to text mode. In text mode a
file is assumed to be composed of lines of text terminated by newline characters.
It is possible that the way the file is physically stored on disk is different from
this. For example, end of line is sometimes stored as two characters. Automatic
translation is performed for a text mode file on input and output to resolve
these differences. This translation is not performed for a file opened in binary
mode.

A file can be opened when it is defined:

fstream infile("report.doc",ios:in);

fstream list("result.txt",ios::out);

fstream master("main.dta",ios::in|ios:out);

The ifstream defaults to input and ofstream defaults to output. So we can
write:

ifstream infile("memo.doc");

ofstream list("result.txt");

The function fail can be used to check if a file has been opened without
error, or the file object’s name can be used on its own:

ifstream data("input.txt");

if ( data.fail() )

cout << "open failed for input" << endl";

ofstream list("result.txt");

if ( list )

cout << "open okay for output" << endl;

Here, list is equivalent to !list.fail() as the condition of an if statement.
A not operator can be used with a file object name, so !list is the same as
list.fail().

The definition of a file object can be separated from its opening, and files
can be repeatedly opened and closed:

fstream file;

...

file.open("myfile.dat",ios::out);
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...

file.close();

file.open("myfile.dat",ios::in);

...

file.close();

The close member function shuts down an open file in an an orderly manner.
A file does not have to be closed explicitly. A stream’s destructor is called when
a file object goes out of scope, and this will close the file if it is open. Thus a
normally terminated program will have all of its files correctly closed. However,
if a program crashes with open files, they may be left in an undefined state.

To bring these ideas together, consider a program that copies one file to
another. The following example illustrates how this can be done. The file
names are hard-wired into this version of the program. A method of getting the
file names from the command line is shown in §6.8.2.

#include <fstream.h>

#include <stdlib.h>

void main()

{

cout << "file copy beginning" << endl;

ifstream in;

in.open("test.in");

if ( in.fail() ) {

cout << "Unable to open input file" << endl;

exit(99);

}

ofstream out("test.out");

if ( !out ) {

cout << "Unable to open output file" << endl;

exit(99);

}

char c;

in.get(c.good()); // read ahead

while ( in ) {

out.put(c);

in.get(c);

}

cout << "file copy complete" << endl;

}

Here, the copying is done by a while loop that stops at the end of the input file.
The file is read just before the loop is entered and in the last statement of the
loop. This technique is called read ahead, and it ensures the correct management
of data when end of file is encountered, and when the input file is empty.
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14.8 Redirection

The standard streams can be redirected to named files. Some versions of C++

allow stream object assignment for this purpose, but this approach is non-
standard. The preferred method is to replace the standard stream buffer with
one that is connected to a named file. This is easy:

#include<fstream.h>

...

filebuf fb;

fb.open("log.dat",ios::out);

cout.rdbuf(&fb);

Here, a file buffer is created, and connected to a file called log.dat. The cout

buffer is then replaced using the rdbuf member function. Older versions of C++

might not allow rdbuf to be used in this way, and an implementation dependent
method for redirecting the standard streams will have to be used instead.

It is generally bad practice to redirect cerr in case important error messages
are lost.

14.9 Persistent classes

Class objects that remain in existence after a program has finished are often
called persistent. A simple way to achieve persistence is to save and restore
objects at appropriate times. The following example shows how an object can
be written to and from a named file using marshalling functions:

#include <fstream.h>

#include <string>

class Stock {

public:

Stock( int acode = 999, double acost = 0.0,

int alevel = 0, const string& adescription = "" );

// ...

void write( ostream& out ) const;

void read( istream& in );

private:

int thecode;

string thedescription;

double thecost;

int thelevel;

};

Stock::Stock( int acode, double acost, int alevel,

const string& adescription )

: thecode(acode), thecost(acost), thelevel(alevel),

thedescription(adescription) {}

void Stock::write( ostream& out ) const
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{

out << thecode << endl;

out << thedescription << endl;

out << thecost << endl;

out << thelevel << endl;

}

void Stock::read( istream& in )

{

in >> thecode;

getline(in,thedescription);

in >> thecost;

in >> thelevel;

}

void main()

{

cout << "persistence test" << endl;

fstream file;

Stock item1(111,2.5,25,"Left handed widgets");

Stock item2(222,5.6,200,"Right handed widgets");

Stock item3(333,8.1,12,"Blue widgets");

Stock buff;

file.open("stock.dat",ios::out);

if ( file.fail() ) {

cout << "Unable to open stock file for output" << endl;

exit(99);

}

item1.write(file);

item2.write(file);

item3.write(file);

file.close();

file.open("stock.dat",ios::in);

if ( file.fail() ) {

cout << "Unable to open stock file for input" << endl;

exit(99);

}

buff.read(file);

while ( !file.eof() ) {

buff.write(cout);

cout << "---------------" << endl;

buff.read(file);

}

file.close();

}

The marshalling functions in Stock are called read and write. They are
not completely symmetric because the read function cannot simply reverse the
insertions in the write function. In this case, the write function is also suitable
for direct screen output, and it is used to list the Stock objects recovered from
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the file.

14.10 Exercises

1. Write a program that converts all the tab characters in a text file to a
specified number of space characters. It should work as a command with
the following format: detab filein fileout [space] where filein is
the input file and fileout is the resulting file with all of its tab characters
replaced. The last parameter is optional. It is the number of spaces that
replace a tab character. If it is not given, it defaults to 3.

2. A file contains names and addresses in the following comma delimited for-
mat: name,addr1,addr2,addr3 where each field is separated by a comma
and each name and address record is on its own line. Some fields might be
blank, but the commas will still be present in the record. Write a program
that prints this file. Each field should start on a new line, and the address
lines should be indented by three spaces.

3. Take the List class given in §8.10, and add marshalling functions. This
class uses a linked list implementation, so the solution to this is not trivial.
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Appendix A

Model Solutions

Index

Exercise Page Exercise Page Exercise Page Exercise Page

2.2 193 5.2 199 7.5 208 11.3 222
2.3 194 5.3 200 7.6 209 12.1 223
3.1 194 5.4 201 8.1 210 12.2 225
3.2 194 5.5 201 8.2 212 12.3 226
3.3 195 6.1 201 8.3 213 12.4 227
3.4 195 6.2 202 9.1 214 13.1 229
3.5 196 6.3 202 9.2 215 13.2 230
4.1 196 6.4 202 9.3 216 13.3 231
4.2 197 6.5 203 9.4 218 14.1 232
4.3 197 7.1 203 10.1 219 14.2 234
4.4 198 7.2 206 10.2 219 14.3 235
4.5 198 7.3 206 10.3 220
5.1 198 7.4 207 11.1 221

Exercise 2.2

Write a program that asks for your first name and then prints a hello message with
your name in it.

#include <iostream.h>

#include <string>

void main()

{

string name;

cout << "Please give your first name: ";

cin >> name;

cout << endl;

cout << "Hello " << name

<< ". It is nice to know you." << endl;

193
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}

Exercise 2.3

Write a program that asks for two number and prints out their sum.

#include <iostream.h>

void main()

{

float a, b;

cout << "Please give two numbers: ";

cin >> a >> b;

cout << "The sum of " << a << " and " << b

<< " is " << (a + b) << endl;

}

Exercise 3.1

Value added tax (VAT) is 17.5%. Write a program that asks for a value; then prints
out the value, the VAT amount and the total cost.

#include <iostream.h>

const float VAT = 17.5;

void main()

{

float value;

float vatamount;

float total;

cout << "VAT Calculation Program" << endl;

cout << "Please enter value: ";

cin >> value;

vatamount = value * VAT / 100;

total = value + vatamount;

cout << "value " << value << endl;

cout << "VAT amount " << vatamount << endl;

cout << "total " << total << endl;

}

Exercise 3.2

Write a program to calculate the area and circumference of a circle.

#include <iostream.h>

const double PI = 3.1416;
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void main()

{

double radius;

cout << "Circle Program" << endl;

cout << "Please enter radius: " << endl;

cin >> radius;

cout << "Area is "

<< PI * radius * radius << endl;

cout << "Circumference is "

<< 2 * PI * radius << endl;

}

Exercise 3.3

Calculate the value of various C++ expressions.

Part Calculation Result Comments

a b + c * 6 56 Operator * calculated first.
b c % b 1 Remainder is 1.
c c / b + 4 8 The expression c/b is calculated

as integer.
d c / b + 4.0 8 The same as part c. The double

4.0 makes no difference.
c / double(b) + 4.0 8.5 The expression c/double(b) is

calculated as floating point.
e a - 4 != 3 1 This is true.
f c / (a - 3 * b) ? Error caused by divide by zero.
g a == 6 && b == 3 0 This is false.

Note that if (e) or (g) are written explicitly in a cout statement they must
be enclosed in brackets like this:

cout << ( a - 4 != 3 ) << endl;

The << operator has a higher priority than the logical operators such as !=.
This causes an error because the expression does not group correctly about the
<< and logical operators.

Exercise 3.4

Experiment with ++ and -- operators.

statement value of i

i = j++ - --k; -4
i = k * -i; 20
i = j * i++; undefined

The undefined value produced by i = j * i++ was actually 41 with a test
program compiled with Borland’s C++ v4.0. But it might be different with
another compiler. Expressions like this are unreliable. Never use them.
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Exercise 3.5

Write some expressions that modify individual bits in an integer value.

motor = ~0x3; // (a) initialise

motor |= 0x03; // (b) set both bits on

motor &= 0xFFFFFFFD; // (c) motor off

motor |= 0x02; // (d) motor on

motor ^= 0x01; // (e) toggle direction

This is a crude solution. It is unsatisfactory for a number of reasons. Un-
derstanding the bit patterns is difficult, and calculating them is error prone.
Statement (c) is particularly poor because it makes the assumption that motor
is 16 bits long. Here is a better solution:

enum MotorBits { MBdIR = 1, MBoNoFF= 2 };

motor = ~(MBdIR | MBoNoFF); // (a')
motor |= MBdIR | MBoNoFF; // (b')
motor &= ~MBoNoFF; // (c')
motor |= MBoNoFF; // (d')
motor ^= MBdIR; // (e')

This method gives the control bits names, and then uses them to build the bit
patterns. Much safer and easier to understand than the first attempt. The value
of each bit represents its position in motor. If a bit’s position is n, its name’s
value is 2n where the low order bit is n = 0.

Exercise 4.1

Write a program to calculate the sum of the integers between two values input at
the terminal.

There is a formula for calculating the sum of the integers between two values:

sum =
(last− first+ 1)(last+ first)

2

But in the spirit of this chapter, here is a solution that uses a loop:

#include <iostream.h>

void main()

{

int start, end;

cout << "Give two integers please: ";

cin >> start >> end;

int sum = 0;

for ( int i = start; i <= end; i++ )

sum += i;

cout << "The sum of the integers between "

<< start << " and " << end

<< " is " << sum << endl;

}
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Exercise 4.2

Calculate the factorial of a value input at the terminal.

#include <iostream.h>

void main()

{

int number;

cout << "Factorial Calculator" << endl

<< "--------------------" << endl;

cout << "Give integer: ";

cin >> number;

long factorial = 1;

for ( int i = 1; i <= number; i++ )

factorial *= i;

cout << "Factorial " << number << " is "

<< factorial << endl;

}

Exercise 4.3

Write a short program to print out a character’s binary code.

This is a technically difficult problem. This solution exploits the fact that
a character is an integral type, and that the senior, or right most, bit of a
negative number is 1. After each senior bit is tested it is removed with a left
shift operation:

#include <iostream.h>

void main()

{

char thechar;

cout << "Character to Binary Converter" << endl

<< "-----------------------------" << endl;

cout << "Give a character: ";

cin >> thechar;

cout << "the binary code for this is ";

int i = 1;

while ( i++ <= 8 ) {

if ( thechar < 0 )

cout << 1;

else

cout << 0;

thechar <<= 1; // shift left one bit

}

cout << endl;

}
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Exercise 4.4

Write a program that finds a root of a particular quadratic using Newton’s method.
(Formula given in question.)

#include <iostream.h>

#include <math.h>

const float MINdIFF = 0.001;

const float START = 1.0;

void main()

{

float xold;

float xnew = START;

do {

xold = xnew;

xnew = xold - ( xold*xold*xold - xold - 1 ) /

( 3*xold*xold -1 );

cout << "approximation is " << xnew << endl;

} while ( fabs(xnew - xold) >= MINdIFF );

cout << "Root is " << xnew << endl;

}

Exercise 4.5

Write a program that prints a multiplication matrix.

#include <iostream.h>

#include <iomanip.h>

const int START = 1;

const int END = 12;

const int FwIDTH = 4;

const int TiDENT = 15;

void main()

{

cout << setw(TiDENT) << "";

cout << "Multiplication Matrix" << endl;

cout << setw(TiDENT) << "";

cout << "---------------------" << endl << endl;

for ( int row = START; row <= END; row++) {

for ( int col = START; col <= END; col++ )

cout << setw(FwIDTH) << col * row;

cout << endl;

}

}

Exercise 5.1

Write a program that inputs five floating point numbers and stores them in an array.
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After they are all input, the program should print them out. Then calculate and
print the average of the values stored in that array.

#include <iostream.h>

const int NUMS = 5;

void main()

{

float number[NUMS];

int i;

float sum = 0;

for ( i = 0 ; i < NUMS; i ++ ) {

cout << "Number please: ";

cin >> number[i];

}

cout << "The numbers are ";

for ( i = 0 ; i < NUMS; i ++ ) {

cout << ' ' << number[i];

}

cout << endl;

for ( i = 0 ; i < NUMS; i ++ )

sum += number[i];

cout << "The average of these numbers is "

<< sum / NUMS << endl;

}

Exercise 5.2

Write a program that inputs a word and checks if it is a palindrome, using C strings.

#include <iostream.h>

#include <string.h>

void main()

{

const int MAXsTRLEN = 128;

char word[MAXsTRLEN];

cout << "Give a word: ";

cin >> word;

char revs[MAXsTRLEN];

int wordpos = strlen(word) - 1;

int revpos = 0;

while ( wordpos >= 0 )

revs[revpos++] = word[wordpos--];

revs[strlen(word)] = '\0';
if ( strcmp(word,revs) == 0 )

cout << word << " is a ";

else

cout << word << " is not a ";
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cout << "palindrome" << endl;

}

A C++ string version can be written using almost the same algorithm. It is
actually slightly simpler because a string termination character does not have
to be considered, and a maximum string length does not have to be specified.
It looks like this:

#include <iostream.h>

#include <string>

void main()

{

string word;

cout << "Give a word: ";

cin >> word;

string revs(" ",word.length());

int wordpos = word.length() - 1;

int revpos = 0;

while ( wordpos >= 0 )

revs[revpos++] = word[wordpos--];

if ( word == revs )

cout << word << " is a ";

else

cout << word << " is not a ";

cout << "palindrome" << endl;

}

Exercise 5.3

(a) Write an algorithm to printout all of the data items stored in the stack example
given in §5.8.

Node* ppntr = stack;

while ( ppntr != 0 ) {

cout << ppntr->data << endl;

ppntr = ppntr->next;

}

(b) Write an algorithm to destroy the whole of the above stack.

Node* dpntr = stack;

while ( dpntr != 0 ) {

Node* next = dpntr->next;

delete dpntr;

dpntr = next;

}

stack = 0;



201

Exercise 5.4

Write an algorithm that creates an independent copy of a linked list (details given
in question). The new list should be in the same order as the original, and the
location of its first node should be stored in a pointer called duplicate.

Node* in = accountlist;

if ( in == 0 )

duplicate = 0; // list empty

else {

// process first node

Node* out = duplicate = new Node;

out->name = in->name;

out->account = in->account;

out->next = 0;

in = in->next;

// process rest of list

while ( in != 0 ) {

out = out->next = new Node;

out->name = in->name;

out->account = in->account;

out->next = 0;

in = in->next;

}

}

Exercise 5.5

Write an algorithm that will double the size of a dynamically allocated array without
losing any of the stored numbers.

float* temp = new float[20];

for ( int i = 0; i < 20; i++ ) {

if ( i < 10 )

temp[i] = height[i];

else

temp[i] = 0.0;

}

delete[] height;

height = temp;

Exercise 6.1

Write a function that takes an array of float numbers and returns the smallest
and largest numbers in that array.

void limits( const float data[], int dsize,

float& min, float& max )

{

min = max = data[0];

for ( int i = 1; i < dsize; i++ ) {
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if ( min < data[i] )

min = data[i];

if ( max > data[i] )

max = data[i];

}

}

Exercise 6.2

Write a delete function for the example in §6.9. The function should take the name
of a dog as an argument and, if it is present, remove it from the array of names.
To remove a name replace it with an empty string.

If the add_dog function in §6.9 is considered, it can be seen that there can be
duplicate names in the array. This function removes the first occurrence of the
target string:

void delete_dog( string dogs[], int max, string adog )

{

int i = 0;

bool done = false;

while ( !done && i < max ) {

if ( dogs[i] == adog ) {

dogs[i] = "";

done = true;

}

i++;

}

}

Exercise 6.3

Write a function that splits a file name with the format name.type into two strings
containing just name and type.

void namesplit( string full, string& name, string& type )

{

int dotloc = full.find_first_of('.');
name = full.substr(0,dotloc);

if ( dotloc == NPOS ) // dot not found

type = "";

else

type = full.substr(dotloc+1,NPOS);

}

Exercise 6.4

Write a function that uses recursion to calculate the sum of the first n positive
integers.
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The function sum calls itself with decreasing values of n, until n is equal to zero.
The test actually checks for n less than or equal to zero. This ensures that the
function handles negative numbers in a reasonable way, by returning zero.

int sum( int n )

{

if ( n <= 0 )

return 0;

else

return n + sum(n-1);

}

Exercise 6.5

Write a program that takes two numbers from the command line and prints their
sum.

#include <iostream.h>

#include <stdlib.h>

void main( int argc, char* argv[] )

{

double num1, num2;

if ( argc != 3 ) {

cout << "Format is:" << endl

<< "addthem <number> <number>"

<< endl;

exit(99);

}

num1 = atof(argv[1]);

num2 = atof(argv[2]);

cout << num1 + num2;

}

Exercise 7.1

The example in §6.9 manages a list of pet dog names using a set of functions and
a shared array of names. Write a class called Dogs to do the same thing.

This solution uses the standard C string function strncpy. This version of
the copy function limits the number of characters processed. It is used in the
member function add to safely copy names into an array of strings. At most
NSIZE characters are copied, so a Dogs object cannot be damaged by adding a
name that is too long.

#include <iostream.h>

#include <string>

enum bool{false,true};

class Dogs {
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// maintain a list of dogs

public:

Dogs();

bool room();

// True if room for another dog.

void add( string name );

// Add 'name' to list of dogs

// If 'name' is blank it is ignored.

// Do nothing if no room.

void remove( string name );

// Remove 'name' from list of dogs.

// If 'name' is blank it is ignored.

// Do nothing if 'name' not found.

int count();

// The number of dogs in list.

bool is( string name );

// True if 'name' is in list.

void print();

// Print the list of dogs.

enum { NSIZE = 10 };

// Maximum length of a name

private:

int thecount;

enum { MAXnAMES = 15 };

string names[MAXnAMES];

bool find( string target, int& loc );

};

Dogs::Dogs() : thecount(0) {}

void Dogs::add( string name )

{

int loc;

if ( name.length() != 0 )

if ( thecount != MAXnAMES ) {

find("",loc);

names[loc] = name;

thecount++;

}

}

void Dogs::remove( string name )

{

int loc;

if ( name.length() != 0 )

if ( find(name,loc) ) {

names[loc]= "";

thecount--;

}

}
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bool Dogs::find( string target, int& loc )

{

loc = 0;

while ( target != names[loc] && loc < MAXnAMES )

loc++;

if ( loc < MAXnAMES )

return true;

else {

loc = 0;

return false;

}

}

int Dogs::count()

{

return thecount;

}

bool Dogs::is( string name )

{

int ignore = 0;

return find(name,ignore);

}

void Dogs::print()

{

for ( int loc = 0; loc < MAXnAMES; loc++ )

if ( names[loc].length() != 0 )

cout << names[loc] << ' ';
}

bool Dogs::room()

{

return bool(thecount < MAXnAMES);

}

void main()

{

Dogs dogs;

dogs.add("Cleo");

if ( dogs.room() ) {

dogs.add("Penny");

}

else

cout << "no room for more dogs" << endl;

cout << "The dogs are ";

dogs.print();

cout << endl << " and there are "

<< dogs.count() << " of them." << endl;
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if ( dogs.is("Ann") )

cout << "Ann is a dog" << endl;

else

cout << "Ann is not a dog" << endl;

dogs.remove("Cleo");

cout << "The dogs are now ";

dogs.print(); cout << endl;

}

Exercise 7.2

(a) Specify an integer stack by writing a class declaration.

class StackInt {

public:

StackInt();

int pop();

// Remove the top item on stack

// returning its value;

// Return value undefined if stack is empty.

void push( int item );

// Put 'item' onto the top of stack.

// Ignore if stack full.

bool empty();

// True if no items in stack.

bool full();

// True if no room for another push.

private:

enum { SIZE = 20 }; // implementation

int data[SIZE];

int stacktop;

};

(b) Show how the above class can be used by writing a short example that inserts
and removes an item from a stack object.

StackInt mystack;

if ( !mystack.full() )

mystack.push(99);

if ( !mystack.empty() ) {

int item = mystack.pop();

cout << "item from stack is " << item << endl;

}

Exercise 7.3

Implement the class declared in the previous exercise using a fixed length array of
integers.

StackInt::StackInt() : stacktop(0) {}
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int StackInt::pop()

{

if ( stacktop > 0 )

return data[--stacktop];

}

void StackInt::push( int item )

{

if ( stacktop < SIZE )

data[stacktop++] = item;

}

bool StackInt::empty()

{

return stacktop == 0;

}

bool StackInt::full()

{

return stacktop > SIZE;

}

Exercise 7.4

Declare and implement a class that simulates the operation of a traffic control
beacon. (Brief specification given in question.)

class TLight {

public:

TLight();

void next();

bool red();

bool green();

void display();

private:

bool redlight;

bool greenlight;

};

TLight::TLight() : redlight(true), greenlight(false){}

void TLight::next()

{

if ( redlight && !greenlight ) {

redlight = false;

greenlight = true;

}

else

if ( !redlight && greenlight ) {

redlight = true;
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greenlight = true;

}

else

if ( redlight && greenlight ) {

redlight = true;

greenlight = false;

}

}

bool TLight::red()

{

return redlight;

}

bool TLight::green()

{

return greenlight;

}

void TLight::display()

{

if ( redlight )

cout << "RED ";

else

cout << "--- ";

if ( greenlight )

cout << "GREEN";

else

cout << "-----";

}

Exercise 7.5

Implement a class that manages a pair of traffic beacons controlling a single track
road. (Class declaration and brief specification given in question.)

class TLpair {

public:

TLpair();

void next();

void display();

private:

TLight beacon1;

TLight beacon2;

};

TLpair::TLpair()

{

beacon1.next();

}
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void TLpair::next()

{

if ( !beacon1.red() && beacon1.green() &&

beacon2.red() && !beacon2.green() ) {

beacon1.next();

}

else

if ( beacon1.red() && beacon1.green() &&

beacon2.red() && !beacon2.green() ) {

beacon1.next();

beacon2.next();

}

else

if ( beacon1.red() && !beacon1.green() &&

!beacon2.red() && beacon2.green() ) {

beacon2.next();

}

else

if ( beacon1.red() && !beacon1.green() &&

beacon2.red() && beacon2.green() ) {

beacon1.next();

beacon2.next();

}

}

void TLpair::display()

{

cout << "( ";

beacon1.display();

cout << " )( ";

beacon2.display();

cout << " )";

}

Exercise 7.6

Explore the way that constructors and destructors are called by writing a simple
program.

A suitable program might look something like the following. An assignment
operator overload has been included in this solution because it makes the output
even more informative. Details of assignment operator overloading can be found
in §9.2.2.

#include <iostream.h>

class Test {

public:

Test()
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{ cout << "Test()" << endl; }

Test( Test& )

{ cout << "Test(Test&)" << endl; }

Test( int )

{ cout << "Test(int)" << endl; }

~Test()

{ cout << "~Test()" << endl; }

Test& operator=( const Test& xx )

{ cout << "Test& operator=(const T&)" << endl;

return *this; }

};

Test f( Test t1, Test t2 )

{

cout << "in function" << endl;

return t1;

}

void main()

{

Test tt1, tt2;

cout << "statement starting" << endl;

tt2 = f(tt1,Test(1));

cout << "statement over" << endl;

}

Exercise 8.1

Write a TaskQueue class for storing TaskInfo objects (definition given in question).
Assume the TaskInfo is provided as a separate component, with a header file called
"task.h". Implement the TaskQueue using separate header and source files.

The header file for the TaskInfo queue should look something like this:

#ifndef TASKQ_H

#define TASKQ_H

#include "task.h"

class TaskQueue {

public:

TaskQueue();

void add( TaskInfo task );

TaskInfo get();

bool empty();

~TaskQueue();

private:

class Node;

Node* first;

Node* last;

};
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#endif

The source code file for the TaskQueue is given below. This uses a similar
method to that used in the List class given in §8.10.

#include "taskq.h"

class TaskQueue::Node {

public:

TaskQueue::Node( TaskInfo task, TaskQueue::Node* node = 0 )

: thetask(task), thenext(node) {}

TaskInfo task()

{ return thetask; }

TaskQueue::Node* next()

{ return thenext; }

TaskQueue::Node* splice( TaskQueue::Node* node )

{ node->thenext = thenext;

thenext = node;

return node; }

private:

TaskInfo thetask;

TaskQueue::Node* thenext;

};

TaskQueue::TaskQueue()

: first(0), last(0) {}

void TaskQueue::add( TaskInfo task )

{

if ( first == 0 )

first = last = new Node(task);

else

last = last->splice(new Node(task));

}

TaskInfo TaskQueue::get()

{

TaskInfo temp = first->task();

Node* dead = first;

first = first->next();

delete dead;

if ( first == 0 )

last = 0;

return temp;

}

bool TaskQueue::empty()

{

return bool(first == 0);

}
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TaskQueue::~TaskQueue()

{

while ( first != 0 ) {

Node* dead = first;

first = first->next();

delete dead;

}

}

Exercise 8.2

Write a program that performs startup and shutdown processing without explic-
itly invoking it from main. (Consult the question for full details of the particular
problem.)

There are at least two solutions. The simplest is to declare a global class object
with a constructor and destructor that do the required processing:

class StartEnd {

public:

StartEnd()

{ cout << "Startup" << endl; }

~StartEnd()

{ cout << "Shutdown" << endl; }

};

StartEnd globobj;

This works because global variables are always initialised before main begins,
and are destroyed after main finishes.

An alternative is to use a global declaration of a private static class variable
to invoke a private nested class’s constructor and destructor:

class StartEnd {

private:

StartEnd(); // prevent declaration

class Message {

public:

Message()

{ cout << "Startup" << endl; }

~Message()

{ cout << "Shutdown" << endl; }

};

static Message mess;

};

StartEnd::Message StartEnd::mess;

The declaration of a private constructor for StartEnd ensures than an actual
instance of this class can never be declared.
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Exercise 8.3

Modify the TaskInfo in exercise 8.1 to support constant instances of the class, and
implement the result.

The TaskInfo class should be modified by the addition of const qualifiers, to
look like the following declaration. An inline implementation has been used for
simplicity.

class TaskInfo {

public:

TaskInfo( int anid, int apriority )

: theruntime(0), theid(anid), thepriority(apriority) {}

void addtime( long millisec )

{ theruntime += millisec; }

int id() const

{ return theid; }

int priority() const

{ return thepriority; }

long runtime() const

{ return theruntime; }

private:

long theruntime;

int thepriority;

int theid;

};

Exercise 8.4

Write a const correct class representing a rectangular games board which has its
dimensions supplied at run-time. Use an inline implementation if possible. (Details
of required member functions are given in the question.)

Inline definitions are used for most of the member functions in this implementa-
tion of the Board class. This has not been done for clear() because it contains
a for loop, which prevents it from being expanded inline on some C++ com-
pilers. The public member functions get, rows and cols are declared as const
so instances of this class can to be used as constants.

An obvious approach to this problem uses a two dimensional array to repre-
sent the board. However, it is not possible to dynamically allocate a two dimen-
sional array when both of its dimensions are variables. So a one dimensional
array is used instead, with a private member function called map that converts
a pair of two dimensional subscripts into an offset for a one dimensional array.
This function also performs the required bounds checking.

enum Marker { BLACK, WHITE, NONE };

class Board {

public:

Board( int rows, int cols )

: rowsize(rows), colsize(cols)
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{ square = new Marker[rowsize*colsize];

clear(); }

~Board()

{ delete[] square; }

void put( Marker piece, int row, int col )

{ square[map(row,col)] = piece; }

Marker get(int row, int col) const

{ return square[map(row,col)]; }

int cols() const

{ return colsize; }

int rows() const

{ return rowsize; }

void clear();

private:

int map( int row, int col ) const

{ if ( row < 0 || row >= rowsize ||

col < 0 || col >= colsize ) {

throw "Board bound error";

}

return row * rowsize + col;

}

int rowsize, colsize;

Marker* square;

};

void Board::clear()

{

for ( int i = 0; i < rowsize * colsize; i++ )

square[i] = NONE;

}

Exercise 9.1

Write a Time class that stores hours, minutes and seconds.
This solution is given with its member functions defined in line. The actual

time is stored as an long integer because this makes the calculations much
easier. A conversion to hours, minutes and seconds is made when time values
are being input and output. Two private member functions are used to handle
these calculations. The insertion and extraction operators are designed so that
any value written with << can be read with >>.

class Time {

friend Time operator+( const Time& t1, const Time& t2 )

{ Time temp;

temp.inseconds = t1.inseconds + t2.inseconds;

return temp; }

friend Time operator-( const Time& t1, const Time& t2 )

{ Time temp;

temp.inseconds = t1.inseconds - t2.inseconds;

return temp; }
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friend ostream& operator<<( ostream& c, const Time& t )

{ long h, m, s;

t.hms(h,m,s);

c << h << '.' << m << '.' << s;

return c; }

friend istream& operator>>( istream& c, Time& t )

{ int h, m, s;

char ignore;

c >> h >> ignore >> m >> ignore >> s;

t.upsecs(h,m,s);

return c; }

public:

Time( int hours = 0, int minutes = 0, int seconds = 0 )

{ upsecs(hours,minutes,seconds); }

Time operator-() const

{ Time temp;

temp.inseconds = -inseconds;

return temp; }

long secs() const

{ return inseconds; }

private:

long inseconds; // data store

void upsecs( int h, int m, int s )

{ inseconds = (( h * 60 ) + m ) * 60 + s; }

void hms( long &h, long &m, long &s ) const

{ long tempsecs;

int sign;

if ( inseconds < 0 ) {

tempsecs = -inseconds;

sign = -1;

}

else {

tempsecs = inseconds;

sign = 1;

}

s = tempsecs % 60;

m = tempsecs / 60;

h = m /60 * sign;

m %= 60; }

};

Exercise 9.2

(a) Make the List class given in §8.10 safe by restricting its copy constructor and
assignment operator.

To prevent the assignment operator and the copy constructor from being
used add the following to the List class:

private:

List( const List& ){}

List& operator=( const List& ){ return *this; }
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(b) Make the List class given in §8.10 safe by implementing a suitable copy
constructor and assignment operator.

To support assignment and initialisation add the following to the public
section of List:

List( const List& alist );

List& operator=( const List& alist );

And this to its private section:

void deepcopy( const List& alist);

This deepcopy function is used in the assignment operator and copy con-
structor to copy all of the nodes to a new linked list. The List class already has
a clear private member function that can be used in the assignment operator
function to dispose of any existing data prior to the copy. The new member
functions are as follows:

void List::deepcopy( const List& from )

{

theroot = 0;

Node* cfrom = from.theroot;

while ( cfrom != 0 ) {

after(cfrom->current());

cfrom = cfrom->next();

}

}

List::List( const List& from )

: theroot(0), thecurrent(0)

{

deepcopy(from);

}

List& List::operator=( const List& from )

{

if ( this != &from ) {

clear();

deepcopy(from);

}

return *this;

}

Exercise 9.3

Write a class for storing names. It should have an iterator in the form of a friend
class.

To keep this solution short the classes have been declared with inline mem-
ber functions. An array implementation has been chosen for simplicity. The
container class is called Names. The private nested class Nstring provides basic
string class support, making the rest of the classes easier to implement. If an
alternative string class is available, it could be used instead. The iterator is
called NameIter. Its getname function gives the current name, in the form of
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a constant C string, and moves on to the next. If endofnames() returns true,
getname should not be used.

#include <string>

class Names {

friend class NameIter;

public:

Names( int maxnames ) : max(maxnames), free(0)

{ array = new string[max]; }

void insert( const string& aname )

{ array[free++] = aname; }

bool contains( const string& aname )

{ bool found = false;

int current = 0;

while ( current < free && !found )

found = bool(array[current++] == aname);

return found; }

bool room()

{ return bool(free < max); }

~Names()

{ delete[] array; }

private:

int max;

int free;

string* array;

};

class NameIter {

public:

NameIter( Names& namestore )

: store(namestore), current(0) {}

string getname()

{ return store.array[current++]; }

bool endofnames()

{ return bool(current > store.max - 1); }

void restart()

{ current = 0; }

private:

Names& store;

int current;

};

Assuming an instance of Name called roads the iterator could be used as
follows to print all the names in road:

NameIter iter(roads);

while ( !iter.endofnames() ) {

cout << iter.name() << endl;

}
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Exercise 9.4

Write a class with its subscript operator overloaded in such a way that the operator
has very different behaviour when used on different sides of an assignment operator.

class HelpStore {

friend class Store;

public:

double operator=( double d );

double operator=( HelpStore& t );

operator double();

private:

HelpStore( Store* a, int s )

: thestore(a), subscript(s) {}

Store* thestore;

int subscript;

};

class Store {

friend class HelpStore;

public:

HelpStore operator[]( int subscript );

private:

void asLvalue( int subscript, double value );

int asRvalue( int subscript );

double data[20];

};

double HelpStore::operator=( double d )

{

thestore->asLvalue(subscript,d);

return d;

}

double HelpStore::operator=( HelpStore& t )

{

double d = t.thestore->asRvalue(t.subscript);

thestore->asLvalue(subscript,d);

return d;

}

HelpStore::operator double()

{

return thestore->asRvalue(subscript);

}

HelpStore Store::operator[]( int subscript )

{

return HelpStore(this,subscript);

}
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void Store::asLvalue( int subscript, double value )

{

cout << "subscript " << subscript << " on LHS, with "

<< value << " being assigned" << endl;

data[subscript] = value;

}

int Store::asRvalue( int subscript )

{

cout << "subscript " << subscript << " on RHS" << endl;

return data[subscript];

}

Exercise 10.1

Given a class called Account (definition given in question) define another class
called Interest. This new class should have the same behaviour as Account,
but should also have member functions for storing and retrieving an interest rate,
calculating its value, and adding or removing interest from the account.

class Interest : public Account {

public:

Interest() : percent(10){};

void rate( float rate )

{ percent = rate; }

float rate() const

{ return percent; }

float interest() const

{ return balance() * percent / 100; }

void add_interest()

{ deposit(interest()); }

void remove_interest()

{ withdraw(interest()); }

private:

float percent;

};

Exercise 10.2

Write a charity project class called Cproj that has start and finish dates and a
money account. Use the Account class from exercise 10.1 as a private base class.
Consider if the use of private inheritance would suitable for an alternative Cproj

class that had more than one money account.

class Cproj : private Account {

public:

Cproj( string start = "no date", string finish = "no date" )

: startdate(start), enddate(finish) {}

string start() const

{ return startdate; }
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string finish() const

{ return enddate; }

Account::balance;

Account::deposit;

private:

string startdate;

string enddate;

};

Private inheritance is not an appropriate method when more than one money
account in need in Cproj. Containment has to be used as the following shows:

class CprojX {

public:

CprojX( string start = "no date", string finish = "no date" )

: startdate(start), enddate(finish) {}

string start()

{ return startdate; }

string finish()

{ return enddate; }

void deposit1( float money )

{ account1.deposit(money); }

void deposit2( float money )

{ account2.deposit(money); }

float balance1() const

{ return account1.balance(); }

float balance2() const

{ return account2.balance(); }

private:

string startdate;

string enddate;

Account account1;

Account account2;

};

Exercise 10.3

(a) Write a Named class that has all the properties of Account (from exercise 10.1),
plus an account name and code. It should be impossible to change the code after
an instance of this class has been created.

class Named : public virtual Account {

public:

Named( string aname, int acode )

: thename(aname), thecode(acode) {}

string name() const

{ return thename; }

int code() const

{ return thecode; }

private:

string thename;
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int thecode;

};

(b) Write a class called Inamed that has all the properties of Named and
Interest (from exercise 10.1). How should the Interest class, designed for
exercise 10.1, be modified to work in this context?

class Inamed : public Interest, public Named {

public:

Inamed( string aname, int acode )

: Named(aname,acode) {}

};

The class Interest, as it is given in the solution for exercise 10.1, will not
work with the above. Its Account base class has to be declared as virtual to
ensure that there is only one instance of it under multiple inheritance. This is
easy, the first line of the Interest is changed to look like this:

class Interest : public virtual Account {

This will not effect the direct use of Interest. The common base class
Account has to be declared as virtual in Named as well.

Exercise 11.1

Implement the virtual display and rotate functions of a shape class. Display the
shapes as character patterns. Implement for a square and a rectangle.

The Shape class might look like this:

class Shape {

public:

Shape( int colr, int x = 0, int y = 0 )

: colour(colr), x_loc(x), y_loc(y) {}

virtual void display() = 0;

virtual void rotate() = 0;

// ...

protected:

void print() // print a colour mark

{ cout << colour; }

void nprint() // print a blank mark

{ cout << ' '; }

private:

int x_loc; // not used

int y_loc; // not used

char colour;

};

This is used to derive a Rectangle class:

class Rectangle : public Shape {

public:

Rectangle( int aheight, int awidth, char colr = 'r' )

: height(aheight), width(awidth), Shape(colr) {}
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void rotate()

{ int t = height;

height = width;

width = t; }

void display()

{ for ( int h = 0; h < height; h++ ) {

for ( int w = 0; w < width; w++ )

print();

cout << endl;

}

cout << endl; }

private:

int height;

int width;

};

The Square class can be derived from Rectangle, with its height and width
the same. The rotate function is overridden to do nothing because a square
rotated through 90 degrees is not changed:

class Square : public Rectangle {

public:

Square( int side, char colr = 's' )

: Rectangle(side,side,colr) {}

void rotate()

{ /* do nothing */ }

};

Exercise 11.3

Write a Circle class that has a member function to modify its radius, and a Rect

(rectangle) class that can have its width and height modified. They should both be
able to supply area and circumference information. It must be possible to maintain
some form of mixed list of Circle and Rect objects, and to use this list to print
the areas of the objects.

The abstract base class should look something like this:

class Geometric {

public:

virtual double area() const = 0;

virtual double circumference() const = 0;

};

The classes Circle and Rect are derived from this base class. They are
declared as follows:

class Circle : public Geometric {

public:

Circle( double aradius = 1 )

: theradius(aradius) {}

void radius( double aradius )
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{ theradius = aradius; }

double radius()

{ return theradius; }

double area() const

{ return PI * theradius * theradius; }

double circumference() const

{ return 2 * PI * theradius; }

private:

static double PI;

double theradius;

};

double Circle::PI = 3.14159;

class Rect : public Geometric {

public:

Rect( double aheight = 1, double awidth = 1 )

: theheight(aheight), thewidth(awidth) {}

void height( double aheight )

{ theheight = aheight; }

double height()

{ return theheight; }

void width( double awidth )

{ thewidth = awidth; }

double width()

{ return thewidth; }

double area() const

{ return theheight * thewidth; }

double circumference() const

{ return 2 * ( theheight + thewidth ); }

private:

double theheight;

double thewidth;

};

Exercise 12.1

Modify the Array template in §12.2 so that assignment and copy constructors are
not restricted.

The example forming the basis of this exercise has its subscript bounds
specified in its constructors. The main difficulty with this problem is deciding
on sensible copy semantics when the bounds of the two arrays are different. For
copying, the target array is given the same bounds and element values as the
source array. For assignment, the target bounds are not changed. The source is
copied to the target an element at a time, starting from the lowest bound, until
either the target array is full or all the elements in the source array are used.
The template is:

template< class Type >

class Array {

public:
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Array( int low, int high );

// subscript in range low to high

// initialise to default constructor of Type

Array( const Array& a );

// support copy semanitics

Array& operator=( const Array& a );

// support assignment semantics

void put( int loc, const Type& value );

// store value in element at loc.

Type get( int loc ) const;

// recover value from element at loc.

bool inbound( int loc ) const;

// check loc is within bounds for this array

~Array();

private:

Type* store;

int lowbound;

int highbound;

void copyin( const Array& a ); // elementwise copy

};

This is much the same as the example in §12.2, but there are now full imple-
mentations for the copy constructor and assignment operator. These both use
the private copyin member function:

template< class Type >

void Array<Type>::copyin( const Array& a )

{

int target = lowbound;

int source = a.lowbound;

while ( target <= highbound && source <= a.highbound )

put(target++,a.get(source++));

}

template< class Type >

Array<Type>::Array( const Array& a )

: lowbound(a.lowbound), highbound(a.highbound)

{

store = new Type[highbound - lowbound + 1];

copyin(a);

}

template< class Type >

Array<Type>& Array<Type>::operator=( const Array& a )

{

if ( this != &a )

copyin(a);

return *this;

}



225

Exercise 12.2

Write an array template parameterised by type and size. Give it a subscript operator
and bounds checking. It must support multidimensional arrays.

The member functions in the following solution have been declared inline for
brevity:

template< class Type, int SIZE >

class Array {

public:

Type& operator[]( int subscrpt )

{ abortcheck(subscrpt);

return data[subscrpt]; }

const Type& operator[]( int subscrpt ) const

{ abortcheck(subscrpt);

return data[subscrpt]; }

int topbound() const

{ return SIZE - 1; }

bool inbounds( int subscrpt ) const

{ return bool( subscrpt >=0 && subscrpt < SIZE ); }

private:

Type data[SIZE];

void abortcheck( int subscrpt ) const

{ if ( !inbounds(subscrpt) ) {

throw "Array subscript out of bounds.";

} }

};

In Array, the subscript operator is overloaded for both constant and non-
constant objects. This supports the use of constant references such as:

double sum( const Array<double,50>& marks )

{

double sum = 0;

for ( int i = 0; i <= marks.topbound(); i++ )

sum += marks[i];

return sum;

}

The Array template can be used to create multidimensional arrays. The
following defines a 5 by 3 matrix of integers, assigns a value to one of its elements,
and prints out the matrix:

Array<Array<int,3>,5> matrix1;

matrix1[4][2] = 8;

for ( int j = 0; j <= matrix1.topbound(); j++ ) {

for ( int k = 0; k <= matrix1[0].topbound(); k++ )

cout << matrix1[j][k] << ' ';
cout << endl;

}



226 APPENDIX A. MODEL SOLUTIONS

Exercise 12.3

Create an array template with bound parameters that is derived from an abstract
base class so that arrays with different bounds can be used polymorphically.

We start with an abstract base class template:

template< class Type>

class BArray {

public:

virtual Type& operator[]( int subscrpt ) = 0;

virtual const Type& operator[]( int subscrpt ) const = 0;

virtual int topbound() const = 0;

virtual bool inbounds( int subscrpt ) const = 0;

};

Then this is used to derive the concrete array template:

template< class Type, int SIZE >

class Array : public BArray<Type> {

public:

Type& operator[]( int subscrpt );

const Type& operator[]( int subscrpt ) const;

int topbound() const;

bool inbounds( int subscrpt ) const;

private:

Type data[SIZE];

void abortcheck( int subscrpt ) const;

};

This is almost the same as the solution to the previous exercise but in this
case Array is derived from BArray. Member function implementation is not
shown because it is exactly the same as for Array in the previous exercise This
arrangement allows the following:

void print( const BArray<int>& a )

{

for ( int i = 0; i <= a.topbound(); i++ )

cout << a[i] << ' ';
cout << endl;

}

void main()

{

Array<int,5> a1;

print(a1);

}

Unfortunately, this does not work with multidimensional arrays quite so well,
and only the primary array can be polymorphic:

void print( const BArray< Array<int,2> >& a ); // okay

void print( const BArray< BArray<int> >& a ); // error
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Exercise 12.4

Write a list class template that can store any kind of object. Base it on the integer
List class given in §8.10.

The solution is an almost trivial adaptation of the List class in §8.10. To
write the template, every occurrence of the stored data type int is replaced with
the template class parameter Type. The Node class also has to be converted into
a template. After this, the class declaration is as follows:

template< class Type >

class List {

public:

List();

// Create a new list, empty() = true, end() = true

void before( Type data );

// Insert new data before current item.

// New item becomes current item

// If end() true insert at end list

void after( Type data );

// Insert new data after current item

// New item becomes current item

// If end() true insert at end list

Type current();

// Data value of current item

void next();

// Make the next item current

bool end();

// Past last item?

// if true current() undefined

bool empty();

// List empty?

// If true, end() = true and current() undefined

void top();

// Goto first item if one exists

void bottom();

// Goto last item if one exists

~List();

// Clean up

private:

/* class Node<Type>; // forward reference not needed */

Node<Type>* theroot;

Node<Type>* thecurrent;

Node<Type>* theprevious;

void clear(); // for destructor

bool attop_empty(); // At top of list or list empty?

bool atbottom(); // At bottom of list?

};

Here, the only significant differences is that the forward reference to the Node
class is no longer needed. This is because it is now a template, and the rules
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for templates are slightly different to those for ordinary classes. The Node class
now looks like this:

template< class Type >

class Node {

public:

Node( Type data, Node* node = 0 )

: thedata(data), thenext(node)

// Initialise a node with 'data' and connect it

// to 'node'.
// If 'node' not given end of list is indicated.

{}

Type data()

// The data value in this node

{ return thedata; }

Node* next()

// The next node in the list

// or zero if there is not one.

{ return thenext; }

Node* splice( Node* node )

// Put 'node' into the list after this node.

// 'node' is connected to the node this node

// was connected to.

{ node->thenext = thenext;

thenext = node;

return node; }

private:

Type thedata;

Node* thenext;

};

The implementation of this List template is almost the same as for the
non-template version. As an example, here are two member functions:

template< class Type >

List<Type>::List()

: theroot(0), thecurrent(0), theprevious(0) {}

template< class Type >

void List<Type>::before( Type data )

{

if ( attop_empty() )

// insert at 'theroot'
theroot = thecurrent = new Node<Type>(data,theroot);

else

// insert after 'theprevious'
thecurrent = theprevious->splice(new Node<Type>(data));

}
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Exercise 13.1

Write a template for a bound array class. It should throw an exception if an array
instance is accessed with a subscript that is out of range.

The exception class is called XarrayBound. It holds the value of the offend-
ing subscript. An instance of this class is thrown in the abortcheck private
member function of Array if a subscript is out of range. Apart from this modi-
fication to abortcheck, this template class is exactly the same as the solution
to exercise 12.2:

class XarrayBound {

public:

XarrayBound( int asub )

: badval(asub) {}

int subscript()

{ return badval; }

private:

int badval;

};

template< class Type, int SIZE >

class Array {

public:

Type& operator[]( int subscrpt )

{ abortcheck(subscrpt);

return data[subscrpt]; }

const Type& operator[]( int subscrpt ) const

{ abortcheck(subscrpt);

return data[subscrpt]; }

int topbound() const

{ return SIZE - 1; }

bool inbounds( int subscrpt ) const

{ return bool( subscrpt >=0 && subscrpt < SIZE ); }

private:

Type data[SIZE];

void abortcheck( int subscrpt ) const

{ if ( !inbounds(subscrpt) ) {

throw XarrayBound(subscrpt);

} }

};

The XarrayBound exception can be caught like this:

try {

myarray1[5] = 99;

}

catch ( XarrayBound error ) {

cout << "bounds error with subscript "

<< error.subscript() << endl;

}
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Exercise 13.2

Show how casting can be used to fully access an object with a pointer to its base
class. The solution should be based on the classes Store and Storable, both of
which are discussed in the question.

First define a couple of classes based on Storable:

class Bread : public Storable {

public:

Bread( int aprice, string atype )

: theprice(aprice), thetype(atype) {}

double price()

{ return theprice; }

string type()

{ return thetype; }

// ...

private:

string thetype;

double theprice;

};

class Coffee : public Storable {

public:

Coffee( int aprice, string avariety, string abrand )

: theprice(aprice), thevariety(avariety),

thebrand(abrand) {}

double price()

{ return theprice; }

string brand()

{ return thebrand; }

// ...

private:

string thebrand;

string thevariety;

double theprice;

};

Instances of these could be declared and used with Store like this:

Store store;

Bread b1(1,"white"), b2(7,"whole meal"), b3(3,"brown");

Coffee c1(2,"Smith's","Javan"),
c2(5,"Ponsomby's","Colombian"),
c3(8,"Brown's","Kenyan");

store.add(&b1);

store.add(&b2);

store.add(&b3);

store.add(&c1);

store.add(&c2);

store.add(&c3);



231

Full access these instances of Coffee and Bread from a pointer returned
from store needs a cast up from their Storable base class using a dynamic
cast:

cout << "List Coffee" << endl;

while( !store.end() ) {

cout << store.current()->price() << " ";

Coffee* coffee = dynamic_cast<Coffee*>(store.current());

if ( coffee != 0 )

cout << coffee->brand() << endl;

else

cout << "not coffee" << endl;

store.next();

}

Exercise 13.3

Casting can seriously damage the health of a program. Show how the misuse of
casting can produce incorrect results.

The following example illustrates how casting can produce invalid results.
This short program complied without errors. The first example is a call to a
function that expects a double parameter but gets a cast int argument. The
value of the returned argument is nonsense. (When this was tested, it actually
crashed the program with a “general protection exception”.) The second exam-
ple shows a valid, and then an invalid, static cast up from a pointer to a base
class to a pointer to a derived class.

The actual outcome of running this program is unpredictable.

#include <iostream.h>

void change( double& param )

{

param = param + 100.3;

}

class Base {};

class Derived1 : public Base {

public:

Derived1(): i(2) {}

int value() { return i; }

private:

int i;

};

class Derived2 : public Base {

public:

Derived2(): d(3.5) {}

double value() { return d; }

private:
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double d;

};

void main()

{

int aninteger = 1234; // example 1

change(reinterpret_cast<double&>(aninteger));

cout << aninteger << endl;

Derived1 d1; // example 2

Derived2 d2;

Base* pd1 = &d1;

Base* pd2 = &d2;

cout << "correct cast up gives value as "

<< static_cast<Derived2*>(pd2)->value() << endl;

cout << "incorrect cast up gives value as "

<< static_cast<Derived1*>(pd2)->value() << endl;

}

Exercise 14.1

Write a program that converts all the tab characters in a text file to a specified
number of space characters.

#include <fstream.h>

#include <string>

#include <stdlib.h>

const char REPLACE = ' ';
const int DEFSPACE = 3;

void getargs( int argc, char* argv[],

string& in, string& out, int& spaces,

bool& invalid )

{

invalid = false;

if ( argc < 3 )

invalid = true;

else {

in = argv[1];

out = argv[2];

if ( argc == 3 )

spaces = DEFSPACE;

else

if ( argc == 4 )

spaces = atoi(argv[3]);

else

invalid = true;

}

}
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void printformat( ostream& os )

{

os << "Format is:" << endl

<< "DETAB <in file> <out file> [<replace spaces>]"

<< endl;

}

void main( int argc, char* argv[] )

{

string namein;

string nameout;

int spaces;

bool error;

getargs(argc,argv,namein,nameout,spaces,error);

if ( error ) {

printformat(cout);

exit(99); // terminate immediately

}

ifstream in(namein.c_str());

ofstream out(nameout.c_str());

char c;

int charcount = 0;

int linecount = 0;

int tabcount = 0;

in.get(c);

while ( !in.eof() ) {

if ( c == '\n' )

linecount++;

else

charcount++;

if ( c == '\t' ) {

tabcount++;

for ( int i = 0; i < spaces; i++ )

out.put(REPLACE);

}

else

out.put(c);

in.get(c);

}

in.close();

out.close();

cout << "Done with " << tabcount << " tabs replaced" << endl;

cout << "There were " << charcount

<< " characters and " << (linecount + 1)

<< " lines in this file" << endl;

}
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Exercise 14.2

Write a program that prints a comma delimited file of names and addresses. Each
field should start on a new line, and the address lines should be indented by three
spaces.

A simple class called Indata is used to manage the incoming data. It has
two member function, one to extract the name and address fields from the file,
and one to print them in the required format. The extract function readfrom

uses get and putback to check for end of line, so records with a blank last field
are managed correctly.

#include <fstream.h>

#include <iomanip.h>

#include <stdlib.h>

#include <string>

class Indata {

public:

void readfrom( ifstream& in )

{ getline(in,name,',');
getline(in,addr1,',');
getline(in,addr2,',');
char c = in.get();

if ( c != '\n' ) {

in.putback(c);

getline(in,addr3);

} }

void printto( ostream& os )

{ os << name << endl;

os << setw(3) << "" << addr1 << endl;

os << setw(3) << "" << addr2 << endl;

os << setw(3) << "" << addr3 << endl; }

private:

string name, addr1, addr2, addr3;

};

void main()

{

ifstream data("addr.dat");

if ( !data ) {

cout << "Cannot open data file" << endl;

exit(99);

}

Indata input;

input.readfrom(data);

while ( !data.eof() ) {

input.printto(cout);

input.readfrom(data);

}

}
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Exercise 14.3

Take the List class given in §8.10, and add marshalling functions.

The following members are added to the List class:

public:

void readfrom( const string& filename );

bool goodread();

void writeto( const string& filename );

private:

bool readokay;

And the member functions are implemented like this:

void List::readfrom( const string& filename )

{

ifstream is(filename.c_str());

if ( !is ) {

readokay = false;

return;

}

clear();

int data;

is >> data;

while ( !is.fail() ) {

after(data);

is >> data;

}

if ( is.eof() ) {

readokay = true;

top();

}

else {

readokay = false;

clear();

}

is.close();

}

bool List::goodread()

{

return readokay;

}

void List::writeto( const string& filename )

{

ofstream os(filename.c_str());

Node* oldcurrent = thecurrent; // preserve state

Node* oldprevious = theprevious;

top();

while ( !end() ) {

os << current() << endl;
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next();

}

thecurrent = oldcurrent; // restore state

theprevious = oldprevious;

os.close();

}



Appendix B

C++ Strings

The C++ string class is called string. To use it, the header file <string> must be
included. It is part of the standard template library name space so std::string

is its full name, or a suitably located using namespace statement can be used
instead. Some C++ compilers have a slightly different string class, but most of
the functions described below should be available.

The type size_type is used extensively in the following description. This is
an implementation dependent unsigned integral type defined as part of the Stan-
dard Template Library. The constant string::npos is the largest representable
value of type size_type.

Some of the string member functions are overloaded on the type of their
input string parameters. These parameters have the following form:

• A C++ string

const string& str, size_type pos = 0,

size_type n = string::npos

This is the string beginning at position pos in the C++ string str, and
continuing for n characters, or to the end of str, whichever comes first.
The parameters pos and n have default values that result in the following
behaviour. If n is omitted, as an argument, the string starts at pos and
goes to the end of str. If both pos and n are omitted, the string is all of
str. An out-of-range error is reported if pos is greater than the length of
str.

Some implementations do not exactly support this behaviour. A common
aberration is that if pos is given, n must also be given. In this case, make
the value of the last parameter string::npos.

• A C string

const char s[], size_type n

const char s[]

This is the value of the C string. The parameter s should be an array of
char holding a sequence of characters terminated with a '\0' character.
The argument given for s shall not be a null pointer. If n is given as
an argument, and s cannot fit into n characters, the string is truncated.

237
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Otherwise, if s is too short, it is padded with spaces. If n is not given as
an argument, all of s is used.

• A repeated character

size_type n, char c

This is the string composed of the character c repeated n times.

B.1 Constructors

• string();

The default constructor. It creates an empty string.

• string( const string& str, size_type pos = 0,

size_type n = string::npos );

string( const char s[], size_t n );

string( const char s[] );

string( size_type n, char c );

Create a string and initialise it with the value of the string obtained from
the given parameters.

B.2 Assignment

• Member function assign

string& assign( const string& str, size_type pos = 0,

size_type n = string::npos );

string& assign( const char s[], size_type n );

string& assign( const char s[] );

string& assign( size_type n, char c );

Replace the value of the target string with the value of the string obtained
from the parameters. This function returns a reference to the string object
for which it was invoked.

• Member functions operator=

string& operator=( const string& str );

string& operator=( const char* s );

string& operator=( char c );

Replace the value of the string with the value given by the parameters
str, s or c. It returns a reference to the string for which the function
was invoked. These overloaded operators have the same behaviour as the
equivalent assign functions.
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B.3 Concatenation

• Member function append

string& append( const string& str, size_type pos = 0,

size_type n = string::npos );

string& append( const char s[], size_type n );

string& append( const char s[] );

string& append( size_type n, char c );

Add the value of the string obtained from the parameters onto the end of
the target string. This function returns a reference to the string object
for which it was invoked.

• Member function operator+=

string& operator+=( const string& str );

string& operator+=( const char s[] );

string& operator+=( char c );

This function adds a string value on to the end of the string for which this
function is invoked, and returns a reference to this object. The behaviour
of this operator overload is the same as the equivalent append function.

• Non-member function operator+

string operator+( const string& lhs, const string& rhs );

string operator+( const char lhs[], const string& rhs );

string operator+( char lhs, const string& rhs );

string operator+( const string& lhs, const char rhs[] );

string operator+( const string& lhs, char rhs );

This is the concatenation operator. This function returns a string that
has a value calculated by adding the string value of the rhs parameter
onto the end of the value of the lhs parameter. Arguments that are char

arrays shall not be null pointers.

B.4 Substring operations

• Member function substr

string substr( size_type pos = 0,

size_type n = string::npos ) const;

Returns a substring without modifying the string to which the function
was applied. The substring starts at the character position pos, and fin-
ishes at the end of the string, or when the substring is n characters long,
whichever is the smaller. If n is omitted, the substring is from character
position pos to the end of the target string. If pos and n are both omitted,
the value of the returned string is the same as the string for which substr

was invoked.

• Member function erase

string& erase( size_type pos = 0,

size_type n = string::npos );
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Remove at most n characters starting with the character at pos. An out-
of-range error is reported if pos is greater than the length of the target
string. If n is omitted, all characters from pos to the end are removed. If
pos and n are both omitted, the all characters are removed. A reference
to the string that this function was applied to is returned.

• Member function insert

string& insert( size_type pos1, const string& str );

string& insert( size_type pos1, const string& str,

size_type pos2, size_type n );

string& insert( size_type pos, const char[] s,

size_type n );

string& insert( size_type pos, const char[] s );

string& insert( size_type pos, size_type n, char c );

Insert the string given by str, s or c, and their associated parameters,
into the target string starting at character pos1. Existing characters in
the target string are not overwritten. A reference to the resulting target
string is returned. An out-of-range error is reported if pos1 is greater than
the length of the target string, or pos2 is greater than the length of str.

• Member function replace

string& replace( size_type pos1, size_type n1,

const string& str );

string& replace( size_type pos1, size_type n1,

const string& str, size_type pos2,

size_type n2 );

string& replace( size_type pos, size_type n1,

const char[] s, size_type n2);

string& replace( size_type pos, size_type n1,

const char[] s );

string& replace( size_type pos, size_type n1, size_type n2,

char c );

Remove the substring beginning at pos1 and continuing for at most n1

characters, and replace it with a substring from str beginning with pos2

and continuing for at most n2 characters. A reference to the resulting
target string is returned. An out-of-range error is reported if pos1 is
greater than the length of the target string, or pos2 is greater than the
length of str.

B.5 Character access

• Member function operator[]

const char& operator[]( size_type pos ) const;

char& operator[]( size_type pos );
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These allow C++ strings to be used like arrays of characters. A reference
to the character at position pos is returned if pos is less than the length of
the target string. This reference can be used to modify the character, but
it should be used immediately. Any subsequent use of the target string
might invalidate the reference. If pos is greater than of the target string,
the behaviour is undefined. The constant version returns 0 if pos is equal
to the length of the target string. The behaviour of the non-constant
version is undefined in this case.

• Member function at

const char* at( size_type n ) const;

char& at(size_type n);

These function have the same behaviour as their operator[] equivalents,
but if pos is greater than or equal to the length of the target string, an
out-of-range exception is thrown.

B.6 Utility functions

• Member function c_str

const char* c_str() const;

Returns the value of the target string as a C string. This will be an
array of char containing a sequence of characters terminated with the
character '\0'. The returned C string must not be treated as valid after
any subsequent use of a non-constant member function with the string
object that provided the string. If its value is required for a longer period
than this, a copy should be made with strcpy from <cstring>.

• Member function data

const char* data() const;

This function is similar to c_str, but it does not terminate the character
sequence returned in the array of char with a '\0' character, and it
returns a null pointer if the length of the target string is zero. This means
that this function does not return a C string.

• Member functions length and size

size_type length() const;

size_type size() const;

These both return the number of characters in the string value stored in
the target string.

• Member function max_size

size_type max_size() const;

Returns the maximum size of the string.

• Member function resize

void resize( size_type n, char c );
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void resize( size_type n );

Alters the length of the target string. If n is less than or equal to the
original length, the string is truncated to its first n characters. If n is
greater than the original length, characters of value c are appended to
make the string n characters long. If an argument for c is not provided,
the appended character is '\0'.

• Member function capacity

size_type capacity() const;

Returns the size of the allocated storage in the string.

• Member function reserve

void reserve( size_type res_arg = 0 );

This function informs a string of a planned change in size, so that it can
manage the storage allocation accordingly. After reserve is used, the
string’s capacity is greater than or equal to res_arg.

• Member function clear

void clear();

Clears the strings value. After this function is used the length of the string
is zero. This function has the same behaviour as erase.

• Member function empty

bool empty();

Returns size() == 0.

• Member function copy

size_type copy(char[] s, size_type n,

size_type pos = 0) const;

Copies a portion of the target string to the an array of char. The substring
starts at pos and continues for n characters, or until the end of the string.
The array s must be large enough to take the substring. The sequence of
characters stored in s is not terminated y a '\0' character, so its not a C
string. It returns the length of the resulting string. An out-of-range error
is reported if pos is greater than the target string length.

B.7 Comparison

• Member function compare

int compare( const string& str ) const;

int compare( size_type pos1, size_type n1,

const string& str ) const;

These functions compare the target string with the string given by the
parameters str, pos1, and n1. For the strings to be evaluated as equal
they must be the same length and have identical character sequences. The
order of unequal strings is determined by the ordering of the first unequal
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character. If the strings being compared are not of equal length, the longer
one is considered to be the greater. The value returned by these functions
is:

string relationship return value

target < parameter less than 0
target == parameter 0
target > parameter greater than 0

The other compare functions behave in a similar way:

int compare( size_type pos1, size_type n1,

const string& str, size_type pos2,

size_type n2 ) const;

This function compares the portion of the target string given by pos1 and
n1, with the string given by the parameters str, pos2, and n2.

int compare( const char[] s) const;

This functions compares the target string with the C string given in s.

int compare( size_type pos1, size_type n1,

const char[] s,

size_type n2 = string::npos ) const;

This function compares the the portion of the target string given by pos1

and n1, with the C string given by the array s, and length n2. If n2 is not
give all of s is used.

• Non-member functions operator==, operator!=, operator<,
operator<=, operator> and operator>=

These functions have the following forms, where ♦ is the operation:

bool operator♦( const string& lhs, const string& rhs);

bool operator♦( const char[] lhs, const string& rhs);

bool operator♦( const string& lhs, const char[] rhs);

bool operator♦( char lhs, const string& rhs);

bool operator♦( const string& lhs, char rhs);

They all alphabetically compare the string values given by the rhs and
lhs parameters. Their behaviour is similar to the standard arithmetic
comparison operators. They return true if the condition holds, otherwise
they return false.

B.8 Search operations

• Member function find

size_type find( const string& str,

size_type pos = 0 ) const;

size_type find( const char s[],

size_type pos, size_type n ) const;
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size_type find( const char s[], size_type pos = 0 ) const;

size_type find( char c, size_type pos = 0 ) const;

Search for the first occurrence of str, s or c in the target string beginning
on or after character position pos. If this string is found, the position of
its first character is returned, otherwise string::npos is returned. If an
argument is not given for pos, the search starts at the beginning of the
target string. For the C string version of find, with the parameter n, the
string s is truncated or padded with spaces to make it n characters long
before the search is performed.

• Member function rfind

size_type rfind( const string& str,

size_type pos = string::npos) const;

size_type rfind( const char s[],

size_type pos, size_type n) const;

size_type rfind( const char s[],

size_type pos = string::npos) const;

size_type rfind( char c,

size_type pos = string::npos ) const;

Almost the same as find, but this function searches for the last occurrence
of str, s or c in the target string beginning on or before character position
pos. The search starts at the end of the target string if an argument is
not given for pos.

• Member function find_first_of

size_type find_first_of( const string& str,

size_type pos = 0 ) const;

size_type find_first_of( const char s[], size_type pos,

size_type n ) const;

size_type find_first_of( const char s[],

size_type pos = 0 ) const;

size_type find_first_of( char c, size_type pos = 0 ) const;

This function treats the string given by str, s or c as a set of characters. It
returns the location of the first character in the target string that matches
any element in this set. If no match is found, it returns string::npos.
The search starts at character position pos, and proceeds to the end of the
target string. If pos is not given as an argument, the search starts at the
beginning of the target string. For the C string version of find_first_of,
with the parameter n, the string s is truncated or padded with spaces to
make it n characters long before the search is performed.

• Member function find_first_not_of

size_type find_first_not_of( const string& str,

size_type pos = 0 ) const;

size_type find_first_not_of( const char s[], size_type pos,

size_type n ) const;
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size_typefind_first_not_of( const char[] s,

size_type pos = 0 ) const;

size_type find_first_not_of( char c,

size_type pos = 0 ) const;

Similar to find_first_of, but this function searches for the first character
in the target string that matches no elements in the set given by str, s
or c.

• Member function find_last_of

size_type find_last_of( const string& str,

size_type pos = string::npos ) const;

size_type find_last_of( const char s[], size_type pos,

size_type n ) const;

size_type find_last_of( const char s[],

size_type pos = string::npos ) const;

size_type find_last_of( char c,

size_type pos = string::npos ) const;

Almost the same as find_first_of, but this function searches for the last
character in the target string that matches an element in the set given by
str, s or c.

• Member function find_last_not_of

size_type find_last_not_of( const string& str,

size_type pos = string::npos ) const;

size_type find_last_not_of( const char s[], size_type pos,

size_type n ) const;

size_type find_last_not_of( const char s[],

size_type pos = string::npos ) const;

size_type find_last_not_of( char c,

size_type pos = string::npos ) const;

Similar to find_last_of, but this function searches for the last character
in the target string that matches no element in the set given by str, s or
c.

B.9 Input and output

• Non-member function operator>>

istream& operator>>( istream& is, string& str);

This extractor function gets a string value from the input stream is,
and assigns it to str. Input stops when a whitespace character (space,
horizontal tab, vertical tab, form-feed or new-line) is encountered, or end
of file occurs. The whitespace character is not extracted from the stream.
At most string::npos-1 characters are input. If no characters are input,
the failbit for set in the input stream. It returns a reference to the input
stream is.
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• Non-member function getline

istream& getline( istream& is, string& str,

char delim = '\n' );

This function inputs a string value from is and assign the value to str.
Input stops when the character delim is encountered, or end of file occurs.
If a delim character is not given as an argument, input stops at end of line.
The delim character is extracted from the stream but it is not appended
to the string value. At most string::npos-1 characters are input, in
which case the failbit is set for the input stream. If end of file occurs,
the eofbit is set. It returns a reference to the input stream is.

• Non-member function operator<<

ostream& operator<<( ostream& os, const string& str);

This inserter function writes the value of str to the output stream os,
and returns a reference to this stream.



Appendix C

C++ Keywords and
Operators

Keywords

asm else operator throw

auto enum private true

bool explicit protected try

break extern public typedef

case false register typeid

catch float reinterpret_cast typename

char for return union

class friend short unsigned

const goto signed using

const_cast if sizeof virtual

continue inline static void

default int static_cast volatile

delete long struct wchar_t

do mutable switch while

double namespace template

dynamic_cast new this
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Operator summary

Unary operators and assignment operators are right associative. All others are
left associative. Each box holds operators with the same precedence. The boxes
are in descending order of precedence.

Operator Description Example

:: scope resolution class_name :: member

:: global :: name

. member selection object . member

-> member selection pointer -> member

[] subscript pointer [ expr ]

() function call expr ( expr_list )

() value construction type ( expr_list )

sizeof size of object sizeof expr

sizeof size of type sizeof ( type )

++ post increment lvalue ++

++ pre increment ++ lvalue

-- post decrement lvalue --

-- pre decrement -- lvalue

~ complement ~ expr

! not ! expr

- unary minus - expr

+ unary plus + expr

& address of & lvalue

* dereference * expr

new create new type

delete destroy delete pointer

delete[] destroy array delete [] pointer

() cast ( type ) expr

.* member selection object . pointer-to-member

->* member selection pointer -> pointer_to_member

* multiply expr * expr

/ divide expr / expr

% modulo expr % expr

+ add expr + expr

- subtract expr - expr

<< shift left expr << expr

>> shift right expr >> expr

< less than expr < expr

<= less than or equal expr <= expr

> greater than expr > expr

>= greater than or equal expr >= expr

== equal expr == expr

!= not equal expr != expr
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Operator Description Example

& bitwise AND expr & expr

^ bitwise exclusive OR expr ^ expr

| bitwise inclusive OR expr | expr

&& logical AND expr && expr

|| logical OR expr || expr

? : conditional expression expr ? expr : expr

= simple assignment lvalue = expr

*= multiply and assign lvalue *= expr

/= divide and assign lvalue /= expr

%= modulo and assign lvalue %= expr

+= add and assign lvalue += expr

-= subtract and assign lvalue -= expr

<<= shift left and assign lvalue <<= expr

>>= shift right and assign lvalue >>= expr

&= AND and assign lvalue &= expr

|= inclusive OR and assign lvalue |= expr

^= exclusive OR and assign lvalue ^= expr

, comma (sequencing) expr , expr
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Appendix D

Arithmetic Conversions

These lists explain, in detail, the conversions performed on operands during the
evaluation of expressions. Knowledge at this low level is not normally needed.

The usual arithmetic conversions

• If either operand is of type long double, the other is converted to long

double.

• Otherwise, if either operand is a double, the other is converted to
double.

• Otherwise, if either operand is float, the other is converted to float.

• Otherwise, the integral promotions are performed on both operands.

• Then, if either operand is unsigned long the other is converted to
unsigned long.

• Otherwise, if one operand is a long int and the other unsigned int,
then if a long int can represent all the values of unsigned int, the
unsigned int is converted to a long int; otherwise both operands are
converted to unsigned long int.

• Otherwise, if either operand is long, the other is converted to long.

• Otherwise, if either operand is unsigned, the other is converted to
unsigned.

• Otherwise, both operands are int.

Integral promotions

• An rvalue of type char, signed char, unsigned char, short int, or
unsigned short int, can be converted to an rvalue of int if int can
represent all the values of the source type; otherwise, the source rvalue
can be converted to an rvalue of type of type unsigned int.
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• An rvalue of type wchar_t or an enumerated type can be converted to
an rvalue of the first of the following types that can represent all of the
values of the source type: int unsigned int long, or unsigned long.

This is a distinct type that can represent unique codes for all members of
the largest supported extended character set.

• An rvalue for for an integral bit-field can be converted to an rvalue of
type int if int can represent all the values of the bit-field; otherwise it
can be converted to unsigned int if unsigned int can represent all the
values of the bit-field.

Bitfields allow the specification of very small objects of a given number
of bits. They can only be declared as part of a structure, union or class.

• An rvalue of type bool can be converted to an rvalue of type int, with
false becoming zero and true becoming one.

Floating point promotions

• An rvalue of type float can be converted to an rvalue of type double.
The value is unchanged.
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C Library Functions

This appendix lists some useful utility functions. The list is not complete,
and it does not include the standard C++ class and template libraries. For
more information about these functions look at the relevant header files on
your computer. Alternatively, for more help, consult any good book on ANSI
C, such as Banahan, M., D. Brady and M. Doran, The C Book, 2nd Edition,
Addison-Wesley, 1991.

Miscellaneous Functions

abort Abnormality terminate program <stdlib.h>

atexit Register function for auto call on exit <stdlib.h>

bsearch Binary search sorted array <stdlib.h>

exit Normal exit <stdlib.h>

getenv Obtain environment information <stdlib.h>

qsort Sort array <stdlib.h>

rand Generate a random integer <stdlib.h>

signal Invoke a function to handle a signal <signal.h>

srand Seed the random number generator <stdlib.h>

system Process system command <stdlib.h>

va_arg Variable argument list access <stdarg.h>

va_end Variable argument list termination <stdarg.h>

va_start Variable argument list intitalization <stdarg.h>

Type and Conversion Functions

atof Convert string to double <stdlib.h>

atoi Convert string to integer <stdlib.h>

atol Convert string to long <stdlib.h>

isalnum Alphanumeric character? <ctype.h>

isalpha Alphabetic character? <ctype.h>

iscntrl Control character? <ctype.h>

isdigit Decimal digit? <ctype.h>

isgraph Printable character but not space? <ctype.h>

islower Lower case alphabetic character? <ctype.h>
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isprint Printable character? <ctype.h>

ispunct Not alphanumeric or space? <ctype.h>

isspace White space? <ctype.h>

isupper Upper case alphabetic character? <ctype.h>

isxdigit Hexadecimal digit? <ctype.h>

strtod String to long <stdlib.h>

strtol String to double <stdlib.h>

strtoul String to unsigned long <stdlib.h>

tolower Convert char to lower case <ctype.h>

toupper Convert char to upper case <ctype.h>

Date and Time Functions

asctime Convert time to string <time.h>

clock Time in ’ticks’ <time.h>

ctime Convert time to string <time.h>

difftime Difference between two calendar times <time.h>

gmttime Greenwich mean time <time.h>

localtime Local time <time.h>

mktime Calendar time <time.h>

strftime Convert time to string <time.h>

time Calendar time <time.h>

Mathematical Functions

abs Absolute value of an int <stdlib.h>

acos Arccosine <math.h>

asin Arcsine <math.h>

atan Arctangent <math.h>

atan2 Principle value of arctangent of y/x <math.h>

atof Convert string to double <stdlib.h>

atoi Convert string to integer <stdlib.h>

atol Convert string to long <stdlib.h>

ceil Ceiling <math.h>

cos Cosine <math.h>

cosh Hyperbolic cosine <math.h>

div Quotient and remainder of int divide <stdlib.h>

exp ex <math.h>

fabs Absolute value of a double <math.h>

floor Floor <math.h>

fmod Floating point remainder of x/y <math.h>

frexp Floating point number to normalized
fraction and integer power of two <math.h>

labs Absolute value of a long <stdlib.h>

ldexp 2yx <math.h>

ldiv Quotient and remainder of long divide <stdlib.h>

log lnx <math.h>

log10 log x <math.h>

modf Floating point to integer fractional parts <math.h>
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pow xy <math.h>

rand Generate a random integer <stdlib.h>

sin Sine <math.h>

sinh Hyperbolic sine <math.h>

sqrt Square root <math.h>

srand Seed the random number generator <stdlib.h>

strtod String to long <stdlib.h>

strtol String to double <stdlib.h>

strtoul String to unsigned long <stdlib.h>

tan Tangent <math.h>

tanh Hyperbolic tangent <math.h>

Memory Functions

calloc Allocate storage <stdlib.h>

free Free storage <stdlib.h>

malloc Allocate storage <stdlib.h>

memchr Find first of char in memory block <string.h>

memcmp Compare blocks of memory <string.h>

memcpy Copy block of memory <string.h>

memmove Copy block of memory <string.h>

memset Set value of memory block <string.h>

realloc Change the size of allocated storage <stdlib.h>

C String Functions

asctime Convert time to string <time.h>

ctime Convert time to string <time.h>

strcat Concatenate strings <string.h>

strchr Find first of char in string <string.h>

strcmp Compare strings <string.h>

strcoll Compare strings <string.h>

strcpy Copy string <string.h>

strcspn Find first of char set in string <string.h>

strerror String equivalent of errno <string.h>

strftime Convert time to string <time.h>

strlen Length of string <string.h>

strncat Concatenate strings <string.h>

strncmp Compare strings <string.h>

strncpy Copy string <string.h>

strpbrk Find last of char set in string <string.h>

strrchr Find last of char in string <string.h>

strspn Length of first char set block in string <string.h>

strstr Find substring <string.h>

strtok Break string into tokens <string.h>

strxfrm String transform <string.h>


