
Bit Manipulation in C and C++

Adrian P. Robson
adrian.robson@nepsweb.co.uk

22nd April 2015

Abstract
The direct manipulation of bits, or bit twiddling, is often necessary in

embedded software, hardware drivers and networking software. This report
explains how to read and modify integer variables at the bit level in the C
and C++ programming languages. Data endianness, bitwise operators, bit
fields and some common methods for addressing hardware are discussed.

Contents
1 Endianness and Significance 2

2 Bitwise Operators 3
2.1 The Operators . 3

3 Logic 4
3.1 Masks . 4
3.2 Setting Bits . 4
3.3 Clearing Bits . 5
3.4 Toggling Bits . 5
3.5 Checking a Bit . 6
3.6 Named Bits . 6
3.7 Field Insertion . 6
3.8 Field Extraction . 7
3.9 Building Fields . 7
3.10 Parameterised Bits . 8

4 Bit Fields 8
4.1 Bit Field Example . 8
4.2 Addressing, Alignment and Packing 9

5 Controlling Hardware 10
5.1 Pointers . 10
5.2 Bit Fields . 10
5.3 Compiler Extensions . 10

1

1 Endianness and Significance
When engaged in bit manipulation, understanding the way that data is stored
in computer hardware is important.

Significance is the order of symbols in the place-value notation that we use
to represent numbers. By convention we write numbers with the most significant
symbols to the left. The left most symbol is often referred to as high order, and
the right hand symbol as low order.

Endianness is the byte and bit ordering used in the storage and use of data.
Typical examples of where endianness is important are the storage of integer
values and network transmission. There are two common possibilities:

Big-endian ‘big end first’: The highest order byte is stored in the lowest
address; or the highest order bit and byte are the first to be transmitted.

Little-endian ‘little end first’: The lowest order byte is stored in the lowest
address; or the lowest order bit and byte are the first to be transmitted.

Figure 1 shows storage endianness for a 4 byte integer. Figure 2 shows the
big-endian IP header, the bits of which are processed left to right and top to
bottom for transmission.

There is a third less common form of endianness: middle-endian or mixed-
endian, where the bytes of a 32 bit word are stored as 2nd, 1st, 4th then
3rd.

Byte values are unchanged by endianness but bits are conventionally addressed
in the same order as their byte’s endianness, as the following tables show:

Big-endian
byte addr 0 1 2 3
bit offset 01234567 01234567 01234567 01234567
binary 00001010 00001011 00001100 00001101
hex 0A 0B 0C 0D

Little-endian
byte addr 3 2 1 0
bit offset 76543210 76543210 76543210 76543210
binary 00001010 00001011 00001100 00001101
hex 0A 0B 0C 0D

0A0B0C0D
Register

Memory

0Aaddr

0Baddr + 1
0Caddr + 2
0Daddr + 3

Big-endian

0A0B0C0D
Register

Memory

0D addr

0C addr + 1
0B addr + 2
0A addr + 3

Little-endian

Figure 1: Big and Little Endianness

2

0 3 4 7 8 15 16 18 19 31

Version IHL ToS Total length
Identification Flags Fragment offset

TTL Protocol Header checksum
Source IP address

Destination IP address
Options

Figure 2: Big-endian IP Header

Endianness is normally prescribed by application requirements or target
hardware. However, endianness can be ignored if bits are only being considered
in terms of their significance, rather than their addresses. If the choice is arbitrary,
little-endian is conventionally used because it has the simplicity that increasing
address matches increasing significance.

Endianness effects CPU, memory, buses, expansion cards and files. Most
computing system are not homogeneous and will normally have mixed endianness.

• Examples of little-endian platforms include Intel 80x86 and DEC. Big-
endian CPUs include Motorola 680x0, Sun Sparc, Java Virtual Machine,
and IBM (e.g., PowerPC). MIPs and ARMs can be configured either way.

• Ethernet cards are big-endian, but the PCI bus that it might be connected
to is little-endian. TCP/IP is big-endian.

• GIF files are little-endian but JPEGs are big-endian.

• The DEC PDP-11 and the sometimes the ARM are middle-endian.

2 Bitwise Operators
2.1 The Operators
Individual or blocks of bits can be modified in an integer variable with the
bitwise and some other operators, which are:

& bitwise AND
| bitwise inclusive OR
^ bitwise exclusive OR
>> right shift
<< left shift
~ ones complement (unary)

The bitwise operators &, | and ^ are binary, and apply their logical operation
(see §3) to pairs of bits with the same significance in their operands.

The left shift operator << moves each bit in its left-hand operand to the left
by the number of positions given in its right-hand operand. Any empty bits
created at the right by the shift are filled with zeroes.

3

The right shift operator moves each bit in its left-hand operand to the right
by the number of positions given in its right-hand operand. Shifting unsigned
integers with >> left fills with zeroes. However, shifting signed integers with
the >> operator, performs an arithmetic shift. This ‘propagates the sign bit’
by filling blank bits with copies of the previous left most bit value. Arithmetic
shifting normally causes problems for bit manipulation. So signed integers should
normally be avoided for bit manipulation work.

The ones complement operator ~ performs bitwise logical negation (see §3)
of its single operand. All ones are changes to zeroes, and all zeroes to ones.

3 Logic
Bitwise operators are applied to bits and pairs of bits in their operands using
conventional boolean logic, with 0 as false and 1 as true. There are four logical
functions:

AND ∧ conjunction
OR ∨ disjunction
XOR ⊕ exclusive disjunction (exclusive OR)
NOT ¬ negation (ones complement)

These are defined in the following truth table:

a b a ∧ b a ∨ b a⊕ b ¬a

0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 1 0 0

3.1 Masks
When working with bitwise operators, masks are used to select which bits in a
variable are to be modified. The mask is the same size as the variable. It has a
one in each bit location that is to be modified, and zeroes for those bits that are
to remain unchanged.

For example, 00101101 would select bits 0, 2, 3 and 5, using the little-endian
convention. This binary number is 44 in decimal or 2D in hexadecimal. The
latter form is the most convenient for expressing masks, and would be written
as 0x2D in C or C++.

3.2 Setting Bits
To set bits to one, we use an OR operation. For each bit position b in the mask
M, input value V and result R, we have the following logical relation:

Rb = Mb ∨ Vb =
{

1 when Mb = 1
Vb when Mb = 0

Applying this logic to the bits of a byte would give the following:

4

mask M 00000110 0x06
value V 10101010 0xAA
result R 10101110 0xAE

So in a program we could use the bitwise inclusive OR operator to set bits 1
and 2 of a byte value to 1 without affecting its other bits with this:

result = 0x06 | value;

or if the input value and result are the same variable, we can write:

value |= 0x06;

3.3 Clearing Bits
To clear bits to zero, we use the AND and NOT operations. For each bit position
b in the mask M, input value V and result R, we have the following logical
relation:

Rb = ¬Mb ∧ Vb =
{

0 when Mb = 1
Vb when Mb = 0

Applying this logic to a byte would give the following:

mask M 00000110 0x06
NOT mask ¬M 11111001 0xF9
value V 10101010 0xAA
result R 10101000 0xA8

So in a program we could use the bitwise AND and the 1’s complement
operators to set bits 1 and 2 of a byte value to 0 without affecting its other bits
with this:

result = ~0x06 & value;

or we can write the following if the input value and result are the same variable:

value &= ~0x06;

3.4 Toggling Bits
To toggle bits, we use an XOR operation. For each bit position b in the mask M,
input value V and result R, we have the following logical relation:

Rb = Mb ⊕ Vb =
{
¬Vb when Mb = 1
Vb when Mb = 0

Applying this logic to a byte would give the following:

mask M 00000110 0x06
value V 10101010 0xAA
result R 10101100 0xAC

5

When there is a zero in the mask the value bit is unchanged, but when there is
a one in the mask the value bit is inverted, or toggled.

So in a program we could use the bitwise exclusive OR operator to toggle
bits 1 and 2 of the byte value to 1 without affecting its other bits with this:

result = 0x06 ^ value;

or if the input value and result are the same variable, we can write:

value ^= 0x06;

3.5 Checking a Bit
To look at a single bit, define a mask with just that bit set and use a bitwise
AND operation. This gives a zero if and only if the target bit is clear. So we
can write:

if (target & 0x20)
printf("bit 5 is on\n");

This works because 0 is interpreted as false and non-zero as true in C and C++.
However, a longer but probably clearer expression is:

if ((target & 0x20) != 0)
printf("bit 5 is on\n");

More than one bit can be checked with an appropriate mask, but interpreting
the result is not so simple. See section §3.8 for a discussion on looking at more
than one bit.

3.6 Named Bits
Performing bit oriented activities can be made a little easier to follow and
maintain by giving the bits names. So we could have:

#define LED1 0x02
#define LED2 0x04

:
PORTD |= LED1 | LED2; // LEDs on

:
PORTD &= ~(LED1 | LED2); // LEDs off

Here, the the bit names LED1 and LED2 are actually masks, and these are
combined as required with bitwise inclusive OR operators to create working
masks to actually select the bits.

3.7 Field Insertion
It is often necessary to insert a variable as a field, or block of bits, into an
existing target. The principle of operation is to align the variable with the target
field and use a mask to define the field width and location. In the mask, a 1
indicates that the equivalent target bit should be replaced; and a 0 indicates that

6

the target’s bit should be unchanged. So for each bit position b in the target T,
mask M, aligned value V and result R, we have the following logical relation:

Rb = (¬Mb ∧ Tb) ∨ (Mb ∧ Vb) =
{

Vb when Mb = 1
Tb when Mb = 0

This logic can be adapted to work with program variables using the bitwise
AND, bitwise OR, ones complement and left shift operators. So to insert a value
into target we can use the statement:

result = (~(widthmask << offset) & target) |
(value << offset);

where offset is the location from the right of the field in target, and widthmask
defines the size of the field as a sequence of ones.

For example, consider target with three fields A, B and C arranged as
AABBBCCC, where we want to replace field B with the contents of value. This
can be expressed as:

result = (~(0x07 << 3) & target) | (value << 3);

This, of course, will only work if the value can fit in the field. So here the
contents of value must be less than or equal to 7.

3.8 Field Extraction
To get a field or block of bits from a variable, it must be extracted with a mask
and then shifted right. The following statement gets NNN from xNNNxxxx:

field = (target & 0x70) >> 4;

So in this case, if target is 0xAA (101010102), the result field will be 2.
In general, it is best if the right shift operation is not arithmetic. So the

variables used should be unsigned integers.

3.9 Building Fields
The left shift operator can be used to build multiple bit fields from integer values.
Consider a 8 bit variable with three fields each 2 bits wide. These represent
values for action, rate and target, and there are 2 bits of padding between
action and rate. This can be visualised as AA__RRTT, and a function to make
the complete variable from three integer values is:

unsigned char makeHeader(int a, int r, int t)
{

return (a << 6) | (r << 2) | t;
}

However, the values used as arguments must not exceed the field sizes, which in
this case are all a maximum integer value of three.

7

unsigned int

3
1

1
5 0

f4 f3 f2 f1 f0

unsigned char

2
4

1
5 7 0

f4 f3 f2 f1 f0

unsigned short

1
5 0

f4 f3 f2 f1 f0

Figure 3: Bit Field Packing Examples

3.10 Parameterised Bits
Sometimes it is useful to be able to dynamically specify which bit is to be
modified. The following function demonstrates this how this can be done for a
little-endian byte:

void setBit(unsigned char *byte, int bitAddr)
{

*byte |= (1 << bit);
}

The shift left operator << is used to create a mask, which is then applied to
the target. For big-endian bits the right shift operator can be used, like this
(8 >> bit), to produce the mask.

4 Bit Fields
In C and C++ we can declare a structure with bit fields. This notation is
provided to support compact data storage, but it can be used as an alternative
to explicit bitwise logic.

Bit fields have a concise notation, and can be very easy to use (§4.1). However,
they have no performance advantage over bit logic, and ensuring correct field
alignment and padding needs some care (§4.2).

4.1 Bit Field Example
Using the previous AA__RRTT example (see §3.9), we can define a structure:

typedef struct {
unsigned char target :2; // TT
unsigned char rate :2; // RR
unsigned char pad :2; // __
unsigned char action :2; // AA

} HeaderBits;

8

We can then declare a variable of this type and assign values to the fields like
this:

HeaderBits header;
...

header.rate = 3;

However, this will not allow us to modify the bits of an integer variable. To
do this we must declare a union:

typedef union {
struct {

unsigned char target :2;
unsigned char rate :2;
unsigned char pad :2;
unsigned char action :2;

} bits;
unsigned char byte;

} Header;

The following function shows how the union can be used to assign field values:

unsigned char makeHeader(int a, int r, int t)
{

Header header;
header.bits.action = a;
header.bits.pad = 0;
header.bits.rate = r;
header.bits.target = t;
return header.byte;

}

4.2 Addressing, Alignment and Packing
The order of field declaration and addressing order are the same. If field f0 is
declared before field f1, then field f0 has the lower address. However, a field’s
significance is dictated by the platform’s endianness.

The type of a bit field affects its alignment and packing. Figure 3 shows the
bit layout of the following structure with unsigned int, unsigned short, and
unsigned char bit fields:

struct {
type f0 :7;
type f1 :3;
type f2 :2;
type f3 :2;
type f4 :2;

} bits;

The short version has the most compact packing; and it is probably what would
be used for bit manipulation. The char version aligns some fields so that they
do not cross byte boundaries. However, it is best to use explicit fields if pad bits

9

are needed, rather than rely on implicit alignments. The int version packs the
same as the short version but is padded to 32 bits.

The packing and alignment of bit fields can be confusing, and a useful
development check is to use the sizeof operator on the struct to confirm its
expected size.

5 Controlling Hardware
Operating systems and embedded control applications are often written in C
because of the language’s ability to access system memory using pointers. Bit
manipulation is used to control hardware that is memory mapped. Devices are
typically controlled by reading and writing ‘registers’ that are located at absolute
memory addresses.

5.1 Pointers
Pointers can used to access device control registers. So given that a system’s
Port D Data Register (PORTD) is at memory location 0x03, a pointer could be
defined like this:

volatile char *PORTD = (char*)0x03;

It is declared as volatile because its value might be changed at any time by the
port hardware. The cast is needed to avoid a compile error.

Bitwise operators can then be used with the dereferenced pointer to read or
modify selected bits in the register thus:

*PORTD |= 0x06; // switch LED 1 and 2 on

5.2 Bit Fields
The register could also be managed using bit fields as follows:

typedef struct {
unsigned char :1; // low order
unsigned char led1 :1;
unsigned char led2 :1;
unsigned char :5;

} PORTDbits;
:

volatile PORTDbits* PORTD = (PORTDbits*)0x03;
:

PORTD->led1 = 1;
PORTD->led2 = 0;

5.3 Compiler Extensions
Often a compiler provides a notation for mapping variables onto these absolute
locations. For example, the Cosmic C compiler for Freescale HC08 allows the
following definition:

10

volatile char PORTD @0x03; /* port D */

Using this notation the register can be treated as a simple integer variable like
this:

PORTD |= 0x06; // switch LED 1 and 2 on

[Version 4.0, bitC.tex, 22/04/15]

11

	Endianness and Significance
	Bitwise Operators
	The Operators

	Logic
	Masks
	Setting Bits
	Clearing Bits
	Toggling Bits
	Checking a Bit
	Named Bits
	Field Insertion
	Field Extraction
	Building Fields
	Parameterised Bits

	Bit Fields
	Bit Field Example
	Addressing, Alignment and Packing

	Controlling Hardware
	Pointers
	Bit Fields
	Compiler Extensions

